基于深度学习的目标检测方法有哪些
时间: 2023-06-24 14:06:57 浏览: 101
基于深度学习的目标检测算法研究进展.docx
基于深度学习的目标检测方法主要有以下几种:
1. R-CNN系列:包括R-CNN、Fast R-CNN、Faster R-CNN和Mask R-CNN等。这些方法都是基于区域提议的方法,先通过一些算法生成候选区域,再对每个候选区域进行分类和回归,最终得出检测结果。
2. YOLO系列:包括YOLO、YOLOv2、YOLOv3和YOLOv4等。这些方法采用单个深度神经网络,通过预测边界框和类别来实现目标检测,速度较快,但在小物体检测方面表现不佳。
3. SSD系列:包括SSD、SSD Mobilenet和SSD MobileDet等。这些方法通过在多个层次上预测不同大小和宽高比的边界框,实现目标检测。
4. RetinaNet:通过引入Focal Loss解决了目标检测中类别不平衡问题,提高了小目标检测能力。
5. CenterNet:通过将目标中心点作为回归目标,不仅可以实现目标的位置和大小预测,还可以实现目标的旋转角度预测。
6. EfficientDet:通过组合不同的网络结构,实现了高效的目标检测。
这些方法在准确率和速度方面各有优劣,可以根据具体应用场景选择合适的方法。
阅读全文