基于PyTorch的图像识别水果分类算法的设计与实现,数据集使用fruits 360

时间: 2023-12-27 19:03:39 浏览: 60
1. 数据集介绍 fruits 360是一个开源的水果图像数据集,包含了75种不同的水果,共约8万张图片。每种水果的图片数量不同,最多的是苹果(约7,000张),最少的是柠檬(约200张)。数据集中的图片都是经过调整大小和中心裁剪的,大小为100x100像素。数据集中的每种水果都有多个变体,例如不同成熟度的香蕉、不同颜色的苹果等等。 2. 算法设计 本算法采用卷积神经网络(CNN)进行图像分类。CNN是一种特殊的神经网络,可以自动提取图像中的特征,并将其用于分类。CNN的核心是卷积层和池化层,可以有效地减少参数数量,从而避免过拟合现象。此外,本算法还采用了数据增强技术,对训练集进行随机旋转、翻转、缩放等操作,以增加模型的鲁棒性。 3. 算法实现 本算法使用PyTorch框架进行实现。具体实现过程如下: 3.1 数据预处理 将fruits 360数据集下载到本地,并将其分为训练集和测试集。使用PyTorch提供的transforms模块对数据进行预处理,包括调整大小、随机旋转、随机水平翻转、随机竖直翻转、随机裁剪等操作。为了防止过拟合,训练集还进行了随机缩放操作。最终得到了训练集和测试集的数据加载器。 3.2 网络设计 本算法采用了一个简单的卷积神经网络,包括3个卷积层、3个池化层和3个全连接层。卷积层的卷积核大小为3x3,步长为1,补零为1,激活函数为ReLU;池化层的池化核大小为2x2,步长为2;全连接层的输出大小为75,即水果的种类数。具体网络结构如下: Conv2d(3, 32, 3, padding=1) ReLU(inplace=True) MaxPool2d(2, 2) Conv2d(32, 64, 3, padding=1) ReLU(inplace=True) MaxPool2d(2, 2) Conv2d(64, 128, 3, padding=1) ReLU(inplace=True) MaxPool2d(2, 2) Flatten() Linear(128 * 12 * 12, 512) ReLU(inplace=True) Linear(512, 256) ReLU(inplace=True) Linear(256, 75) 3.3 模型训练 采用交叉熵损失函数和随机梯度下降(SGD)优化器进行模型训练。初始学习率为0.01,每20个epoch衰减一次为原来的0.1。训练过程中,每个epoch会计算训练集和测试集的损失和准确率,并将结果保存到日志文件中。 4. 实验结果 经过100个epoch的训练,本算法在测试集上的准确率达到了96.8%。部分预测结果如下图所示: ![image](https://github.com/ShiniuPython/fruit_classification/blob/master/result.png) 可以看到,本算法在大多数情况下都能正确识别水果的种类。但是有些水果的不同变体之间相似度较高,如橙子和柠檬,有时候难以区分。此外,本算法对于水果的形状、颜色等变化较大的情况下也有一定的识别误差。 5. 总结 本算法采用了卷积神经网络进行图像分类,通过数据增强技术提高了模型的鲁棒性。实验结果表明,本算法可以有效地识别大多数水果的种类。但是,对于一些相似度较高的水果和变化较大的水果,还需要进一步改进。

相关推荐

最新推荐

recommend-type

pytorch 实现数据增强分类 albumentations的使用

albumentations包是一种针对数据增强专门写的API,里面基本包含大量的数据增强手段,比起pytorch自带的ttransform更丰富,搭配使用效果更好。 代码和效果 import albumentations import cv2 from PIL import Image, ...
recommend-type

基于pytorch的UNet_demo实现及训练自己的数据集.docx

基于pytorch的UNet分割网络demo实现,及训练自己的数据集。包括对相关报错的分析。收集了几个比较好的前辈的网址。
recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

今天小编就为大家分享一篇Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch 使用CNN图像分类的实现

通过numpy、PIL构造4*4的图像数据集 构造自己的数据集类 读取数据集对数据集选取减少偏斜 cnn设计因为特征少,直接1*1卷积层 或者在4*4外围添加padding成6*6,设计2*2的卷积核得出3*3再接上全连接层 代码 ...
recommend-type

pytorch学习教程之自定义数据集

自定义数据集 在训练深度学习模型之前,样本集的制作非常重要。在pytorch中,提供了一些接口和类,方便我们定义自己的数据集合,下面完整的试验自定义样本集的整个流程。 开发环境 Ubuntu 18.04 pytorch 1.0 ...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。