残差神经网络matlab代码
时间: 2023-09-15 22:23:00 浏览: 203
以下是一个简单的残差神经网络的 MATLAB 代码示例:
```matlab
% 定义残差块
function out = residual_block(input, filters)
x = relu(batch_norm(conv2d(input, filters, 'same')));
x = batch_norm(conv2d(x, filters, 'same'));
out = input + x;
end
% 定义卷积层
function out = conv2d(input, filters, padding)
out = conv2(input, filters, padding, 'same');
end
% 定义批量归一化层
function out = batch_norm(input)
epsilon = 1e-6;
gamma = ones(size(input, 3), 1);
beta = zeros(size(input, 3), 1);
mu = mean(input, [1, 2]);
sigma = std(input, 0, [1, 2]);
out = (input - mu) ./ sqrt(sigma.^2 + epsilon);
out = gamma' .* out + beta';
out = permute(out, [2, 1, 3]);
end
% 定义ReLU激活函数
function out = relu(input)
out = max(input, 0);
end
% 定义残差神经网络
function out = residual_network(input)
filters = 16;
layers = 8;
x = input;
for i = 1:layers
x = residual_block(x, filters);
end
out = x;
end
```
此代码实现了一个具有 8 个残差块的残差神经网络,每个块包含两个卷积层和一个批量归一化层,其中第二个卷积层的输出与块的输入相加,以形成残差连接。通过修改 filters 和 layers 的值,可以轻松地更改网络的大小和深度。
阅读全文