def kalman_filter_replace(df, anomaly_indices):
时间: 2023-06-11 16:10:42 浏览: 85
这是一个 Python 函数,用于对数据帧(DataFrame)进行卡尔曼滤波,并替换指定异常数据点的值。
函数定义中的参数为:
- `df`:要进行卡尔曼滤波的数据帧;
- `anomaly_indices`:异常数据点的索引列表。
函数实现的具体过程如下:
1. 定义卡尔曼滤波器的参数,包括观测噪声方差、过程噪声方差、初始状态和协方差矩阵等;
2. 遍历数据帧中的每一列,对每一列进行卡尔曼滤波;
3. 如果当前数据点的索引在异常索引列表中,则将卡尔曼滤波后的值替换为原始值;
4. 返回替换后的数据帧。
以下是函数的示例代码:
```python
import numpy as np
from pykalman import KalmanFilter
def kalman_filter_replace(df, anomaly_indices):
kf = KalmanFilter(
n_dim_obs=1,
n_dim_state=1,
transition_matrices=[1],
observation_matrices=[1],
observation_covariance=1.0,
transition_covariance=0.01,
initial_state_mean=0,
initial_state_covariance=1
)
for col in df.columns:
data = df[col].values.reshape(-1, 1)
filtered_data = kf.filter(data)[0]
for index in anomaly_indices:
filtered_data[index] = data[index]
df[col] = filtered_data
return df
```
阅读全文