用SVM进行语音识别的MATLAB程序
时间: 2023-12-30 09:04:12 浏览: 130
以下是一个简单的基于SVM的语音识别MATLAB程序:
1. 加载语音数据和标签
```matlab
load('speech_data.mat'); % 语音数据和标签
```
2. 分割语音信号为帧
```matlab
frame_length = 256; % 每帧的长度
frame_shift = 128; % 帧移
num_frames = floor((length(speech)-frame_length)/frame_shift)+1; % 总帧数
frames = zeros(frame_length,num_frames); % 存储所有帧
for i=1:num_frames
frames(:,i) = speech((i-1)*frame_shift+1:(i-1)*frame_shift+frame_length);
end
```
3. 提取MFCC特征
```matlab
num_coeffs = 12; % 系数个数
num_filters = 26; % 滤波器个数
mfccs = zeros(num_coeffs,num_frames); % 存储所有MFCC特征
for i=1:num_frames
frame = frames(:,i);
% 预加重
frame = filter([1 -0.97],1,frame);
% 计算功率谱密度
psd = abs(fft(frame)).^2/length(frame);
% 三角滤波器组
fmin = 0;
fmax = 8000;
mel_min = 1125*log(1+fmin/700);
mel_max = 1125*log(1+fmax/700);
mel_points = linspace(mel_min,mel_max,num_filters+2);
hz_points = 700*(exp(mel_points/1125)-1);
fbank = zeros(num_filters,frame_length/2+1);
for j=1:num_filters
low = hz_points(j);
center = hz_points(j+1);
high = hz_points(j+2);
filter_points = linspace(low,high,frame_length/2+1);
for k=1:length(filter_points)
if filter_points(k) < center
fbank(j,k) = (filter_points(k)-low)/(center-low);
else
fbank(j,k) = (high-filter_points(k))/(high-center);
end
end
end
% 应用滤波器组
filtered = log(fbank*psd(1:frame_length/2+1));
% 应用离散余弦变换
dct_coeffs = dct(filtered);
mfccs(:,i) = dct_coeffs(1:num_coeffs);
end
```
4. 训练SVM分类器
```matlab
labels = labels+1; % 将标签从0开始编号改为1开始编号
svm_model = fitcsvm(mfccs',labels); % 训练SVM分类器
```
5. 进行语音识别
```matlab
test_speech = % 待识别的语音信号
test_frames = zeros(frame_length,num_frames); % 存储所有帧
for i=1:num_frames
test_frames(:,i) = test_speech((i-1)*frame_shift+1:(i-1)*frame_shift+frame_length);
end
test_mfccs = zeros(num_coeffs,num_frames); % 存储所有MFCC特征
for i=1:num_frames
frame = test_frames(:,i);
% 预加重
frame = filter([1 -0.97],1,frame);
% 计算功率谱密度
psd = abs(fft(frame)).^2/length(frame);
% 应用滤波器组
filtered = log(fbank*psd(1:frame_length/2+1));
% 应用离散余弦变换
dct_coeffs = dct(filtered);
test_mfccs(:,i) = dct_coeffs(1:num_coeffs);
end
predicted_labels = predict(svm_model,test_mfccs'); % 预测标签
predicted_label = mode(predicted_labels); % 取众数作为最终预测结果
```
以上是一个简单的基于SVM的语音识别MATLAB程序,仅供参考。实际应用中,需要更复杂的特征提取方法和更精细的模型调整。
阅读全文