请用pytorch编写SSD目标检测模型代码,要写出全套代码
时间: 2023-03-05 20:53:26 浏览: 105
好的,以下是一个简单的SSD目标检测模型的PyTorch代码示例。请注意,这只是一个基本示例,需要根据不同的数据集和应用场景进行修改和调整。
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SSD(nn.Module):
def __init__(self, num_classes):
super(SSD, self).__init__()
self.num_classes = num_classes
# define layers for SSD
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.fc6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
self.fc7 = nn.Conv2d(1024, 1024, kernel_size=1)
self.conv6_1 = nn.Conv2d(1024, 256, kernel_size=1)
self.conv6_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv7_1 = nn.Conv2d(512, 128, kernel_size=1)
self.conv7_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv8_1 = nn.Conv2d(256, 128, kernel_size=1)
self.conv8_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv9_1 = nn.Conv2d(256, 128, kernel_size=1)
self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3)
# create additional layers for detection
self.conv4_3_norm = L2Norm(512, 20)
self.conv7_2_norm = L2Norm(256, 10)
self.conv8_2_norm = L2Norm(256, 10)
self
阅读全文