使用python写一个3d视频动作分类识别的代码,预处理视频代码文件和训练代码文件
时间: 2024-02-05 22:05:02 浏览: 74
pytorch 3D视频动作识别代码
以下是一个简单的Python代码示例,用于预处理3D视频数据和训练3D卷积神经网络模型,以进行视频动作分类识别。
## 预处理视频数据
```python
import cv2
import numpy as np
import os
# 定义函数,用于加载视频并将其转换为numpy数组
def load_video(path):
cap = cv2.VideoCapture(path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = cv2.resize(frame, (128, 128))
frames.append(frame)
cap.release()
return np.array(frames)
# 定义函数,用于将视频数据保存为npy文件
def preprocess_videos(input_dir, output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for foldername in os.listdir(input_dir):
folderpath = os.path.join(input_dir, foldername)
for filename in os.listdir(folderpath):
filepath = os.path.join(folderpath, filename)
video = load_video(filepath)
np.save(os.path.join(output_dir, foldername, filename[:-4]), video)
```
此代码将读取一个目录中的所有视频文件,并将每个视频转换为numpy数组,然后保存为npy文件。在这里,我们假设每个视频都是128x128像素大小的灰度图像。
## 训练3D卷积神经网络模型
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import os
class VideoDataset(Dataset):
def __init__(self, input_dir):
self.data = []
for foldername in os.listdir(input_dir):
folderpath = os.path.join(input_dir, foldername)
for filename in os.listdir(folderpath):
filepath = os.path.join(folderpath, filename)
self.data.append((filepath, int(foldername)))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
filepath, label = self.data[idx]
video = np.load(filepath)
video = np.expand_dims(video, axis=0)
return torch.from_numpy(video), label
class Conv3DNet(nn.Module):
def __init__(self):
super(Conv3DNet, self).__init__()
self.conv1 = nn.Conv3d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm3d(16)
self.relu1 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool3d(kernel_size=2, stride=2)
self.conv2 = nn.Conv3d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm3d(32)
self.relu2 = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool3d(kernel_size=2, stride=2)
self.conv3 = nn.Conv3d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm3d(64)
self.relu3 = nn.ReLU(inplace=True)
self.pool3 = nn.MaxPool3d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(in_features=64*4*4*4, out_features=256)
self.fc2 = nn.Linear(in_features=256, out_features=10)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x = self.pool3(x)
x = x.view(-1, 64*4*4*4)
x = self.fc1(x)
x = self.relu1(x)
x = self.fc2(x)
return x
# 定义函数,用于训练模型
def train_model(model, dataloader, optimizer, criterion, device):
model.train()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(True):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
return epoch_loss, epoch_acc
# 定义函数,用于评估模型
def evaluate_model(model, dataloader, criterion, device):
model.eval()
running_loss = 0.0
running_corrects = 0
with torch.set_grad_enabled(False):
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
return epoch_loss, epoch_acc
# 定义主函数,用于训练和评估模型
def main():
input_dir = 'path/to/preprocessed/videos'
output_dir = 'path/to/save/model'
batch_size = 32
num_epochs = 10
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dataset = VideoDataset(input_dir)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
model = Conv3DNet()
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
best_acc = 0.0
for epoch in range(num_epochs):
train_loss, train_acc = train_model(model, dataloader, optimizer, criterion, device)
val_loss, val_acc = evaluate_model(model, dataloader, criterion, device)
if val_acc > best_acc:
best_acc = val_acc
torch.save(model.state_dict(), os.path.join(output_dir, 'best_model.pth'))
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}'
.format(epoch+1, num_epochs, train_loss, train_acc, val_loss, val_acc))
if __name__ == '__main__':
main()
```
此代码将加载预处理后的视频数据,并将其作为数据集传递给DataLoader。然后,它会定义一个Conv3DNet模型,并在训练和验证阶段使用train_model和evaluate_model函数进行训练和评估。最后,它将保存最佳模型的权重,并输出每个时期的训练和验证损失以及准确性。
阅读全文