Casrel模型pytorch版本
时间: 2024-01-07 08:05:10 浏览: 178
以下是CasRel模型的PyTorch版本示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class CasRel(nn.Module):
def __init__(self, num_entities, num_relations, hidden_size):
super(CasRel, self).__init__()
self.num_entities = num_entities
self.num_relations = num_relations
self.hidden_size = hidden_size
self.entity_embedding = nn.Embedding(num_entities, hidden_size)
self.relation_embedding = nn.Embedding(num_relations, hidden_size)
self.query_linear = nn.Linear(hidden_size, hidden_size)
self.key_linear = nn.Linear(hidden_size, hidden_size)
self.value_linear = nn.Linear(hidden_size, hidden_size)
self.fc = nn.Linear(hidden_size, num_relations)
def forward(self, entity_ids, relation_ids, entity_positions):
batch_size = entity_ids.size(0)
entity_embs = self.entity_embedding(entity_ids)
relation_embs = self.relation_embedding(relation_ids)
query = self.query_linear(entity_embs)
key = self.key_linear(entity_embs)
value = self.value_linear(entity_embs)
attn_weights = torch.bmm(query, key.transpose(1,2))
attn_weights = F.softmax(attn_weights, dim=2)
attn_output = torch.bmm(attn_weights, value)
entity_positions = entity_positions.unsqueeze(2)
entity_positions = entity_positions.expand(batch_size, 1, self.hidden_size)
entity_positions = entity_positions.float()
entity_positions = entity_positions.cuda()
entity_pos_embs = entity_positions * entity_embs
output = torch.cat([attn_output, entity_pos_embs, relation_embs], dim=1)
output = self.fc(output)
return output
```
该模型包括实体嵌入层、关系嵌入层、查询线性层、键线性层、值线性层、多头注意力层和全连接层。在前向传递过程中,输入实体ID、关系ID和实体位置,经过实体嵌入、关系嵌入、多头注意力计算、实体位置嵌入和全连接层,最终输出预测的关系ID。
阅读全文