docker chatgpt-mqttapi代码
时间: 2023-11-05 14:01:58 浏览: 160
MQTTPacket源码
作为AI语言模型,我无法提供实际的代码。但是,以下是编写ChatGPT-MQTT API的一般步骤:
1. 安装Docker和MQTT broker
2. 创建Docker镜像并将ChatGPT模型添加到镜像中
3. 编写Python代码,使用paho-mqtt库与MQTT broker进行通信
4. 在代码中解析接收到的消息,使用ChatGPT模型生成回应
5. 将回应发送回MQTT broker
以下是可能的Python代码示例:
```python
import paho.mqtt.client as mqtt
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load ChatGPT model and tokenizer
model_name = "microsoft/DialoGPT-large"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Define MQTT client and connect to broker
client = mqtt.Client()
client.connect("localhost", 1883, 60)
# Define MQTT topics
request_topic = "chat/request"
response_topic = "chat/response"
# Define callback for receiving messages
def on_message(client, userdata, message):
# Decode message payload
input_text = message.payload.decode()
# Generate response using ChatGPT model
input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors="pt")
response_ids = model.generate(input_ids, max_length=50, pad_token_id=tokenizer.eos_token_id)
response_text = tokenizer.decode(response_ids.squeeze(), skip_special_tokens=True)
# Publish response to MQTT broker
client.publish(response_topic, response_text)
# Subscribe to request topic and start MQTT client loop
client.subscribe(request_topic)
client.on_message = on_message
client.loop_forever()
```
阅读全文