用python写出来这个贝叶斯网络
时间: 2023-12-17 19:52:17 浏览: 71
yabn:另一个贝叶斯网络
好的,这里是一个简单的贝叶斯网络的 Python 实现示例:
```python
import numpy as np
class BayesianNetwork:
def __init__(self, nodes, edges, probabilities):
self.nodes = nodes
self.edges = edges
self.probabilities = probabilities
def infer(self, evidence):
# 计算联合概率
joint_prob = 1.0
for node in self.nodes:
parents = self.edges[node]
if len(parents) == 0:
# 无父节点,使用节点概率
prob = self.probabilities[node]
else:
# 有父节点,使用条件概率
parent_states = tuple(evidence[parent] for parent in parents)
prob = self.probabilities[node][parent_states]
# 如果节点是证据变量,则只考虑已观测到的状态
if node in evidence:
state = evidence[node]
joint_prob *= prob[state]
else:
# 否则考虑所有状态的概率
joint_prob *= sum(prob)
# 计算归一化常数
sum_prob = 0.0
for state in self.get_all_states():
evidence_copy = evidence.copy()
evidence_copy.update(state)
sum_prob += self.get_joint_prob(evidence_copy)
# 计算后验概率
posterior_probs = {}
for state in self.get_all_states():
evidence_copy = evidence.copy()
evidence_copy.update(state)
posterior_probs[state] = self.get_joint_prob(evidence_copy) / sum_prob
return posterior_probs
def get_joint_prob(self, evidence):
joint_prob = 1.0
for node in self.nodes:
parents = self.edges[node]
if len(parents) == 0:
# 无父节点,使用节点概率
prob = self.probabilities[node]
else:
# 有父节点,使用条件概率
parent_states = tuple(evidence[parent] for parent in parents)
prob = self.probabilities[node][parent_states]
# 如果节点是证据变量,则只考虑已观测到的状态
if node in evidence:
state = evidence[node]
joint_prob *= prob[state]
else:
# 否则考虑所有状态的概率
joint_prob *= sum(prob)
return joint_prob
def get_all_states(self):
states = [{}]
for node in self.nodes:
new_states = []
for state in states:
for value in self.probabilities[node]:
new_state = state.copy()
new_state[node] = value
new_states.append(new_state)
states = new_states
return states
```
这个实现中,我们首先定义了贝叶斯网络的节点、边以及概率表。然后,我们实现了一个 `infer` 方法,用于计算后验概率。在 `infer` 方法中,我们首先计算联合概率,然后通过归一化常数计算后验概率。我们还实现了一个 `get_joint_prob` 方法,用于计算给定证据的联合概率。最后,我们实现了一个 `get_all_states` 方法,用于获取所有可能的状态。
阅读全文