keras实现resnet对四种天气分类,并绘制图像

时间: 2024-04-27 12:21:47 浏览: 5
好的,我来一步步为您讲解如何使用Keras实现ResNet对四种天气进行分类,并绘制图像。 1. 数据集准备: 首先,您需要准备一个包含四种天气图像的数据集。这里我们以晴天、多云、雨天和雪天为例,每种天气至少准备100张图片,放在一个文件夹中,文件夹的名字分别为“sunny”、“cloudy”、“rainy”和“snowy”。 2. 数据预处理: 将图像转换为Keras可以处理的格式,我们可以使用ImageDataGenerator类进行数据预处理。具体步骤如下: ```python from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) train_set = train_datagen.flow_from_directory('path/to/train', target_size=(64, 64), batch_size=32, class_mode='categorical') test_set = test_datagen.flow_from_directory('path/to/test', target_size=(64, 64), batch_size=32, class_mode='categorical') ``` 3. 构建ResNet模型: 在Keras中,我们可以使用ResNet50、ResNet101、ResNet152等不同的深度的ResNet模型。这里我们选择ResNet50作为示例。 ```python from keras.applications.resnet50 import ResNet50 from keras.layers import Dense, Flatten from keras.models import Model base_model = ResNet50(include_top=False, weights='imagenet', input_shape=(64, 64, 3)) x = base_model.output x = Flatten()(x) predictions = Dense(4, activation='softmax')(x) model = Model(inputs=base_model.input, outputs=predictions) for layer in base_model.layers: layer.trainable = False ``` 这里我们使用ResNet50作为基础模型,去除最后一层全连接层,增加一个新的全连接层用于分类。由于我们的数据集比较小,因此我们可以选择冻结ResNet50的所有层,只训练新添加的全连接层。 4. 模型编译和训练: ```python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit_generator(train_set, steps_per_epoch=800, epochs=10, validation_data=test_set, validation_steps=200) ``` 在这里,我们使用adam优化器、交叉熵损失函数和准确率评估指标对模型进行编译。然后,我们使用训练集数据进行模型训练,每个epoch训练800个步骤,总共训练10个epoch。同时,我们使用测试集数据进行模型验证,每个epoch验证200个步骤。 5. 绘制训练曲线: ```python import matplotlib.pyplot as plt acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'b', label='Training accuracy') plt.plot(epochs, val_acc, 'r', label='Validation accuracy') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'b', label='Training loss') plt.plot(epochs, val_loss, 'r', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() ``` 6. 预测新图像: ```python import numpy as np from keras.preprocessing import image img_path = 'path/to/new_image.jpg' img = image.load_img(img_path, target_size=(64, 64)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) preds = model.predict(x) ``` 在这里,我们使用Keras的image模块读取新的图像,并将其转换为模型可以处理的格式。然后,我们使用训练好的模型进行预测。 到此为止,我们已经完成了使用Keras实现ResNet对四种天气进行分类,并绘制图像的全部步骤。

相关推荐

import tensorflow as tf from im_dataset import train_image, train_label, test_image, test_label from AlexNet8 import AlexNet8 from baseline import baseline from InceptionNet import Inception10 from Resnet18 import ResNet18 import os import matplotlib.pyplot as plt import argparse import numpy as np parse = argparse.ArgumentParser(description="CVAE model for generation of metamaterial") hyperparameter_set = parse.add_argument_group(title='HyperParameter Setting') dim_set = parse.add_argument_group(title='Dim setting') hyperparameter_set.add_argument("--num_epochs",type=int,default=200,help="Number of train epochs") hyperparameter_set.add_argument("--learning_rate",type=float,default=4e-3,help="learning rate") hyperparameter_set.add_argument("--image_size",type=int,default=16*16,help="vector size of image") hyperparameter_set.add_argument("--batch_size",type=int,default=16,help="batch size of database") dim_set.add_argument("--z_dim",type=int,default=20,help="dim of latent variable") dim_set.add_argument("--feature_dim",type=int,default=32,help="dim of feature vector") dim_set.add_argument("--phase_curve_dim",type=int,default=41,help="dim of phase curve vector") dim_set.add_argument("--image_dim",type=int,default=16,help="image size: [image_dim,image_dim,1]") args = parse.parse_args() def preprocess(x, y): x = tf.io.read_file(x) x = tf.image.decode_png(x, channels=1) x = tf.cast(x,dtype=tf.float32) /255. x1 = tf.concat([x, x], 0) x2 = tf.concat([x1, x1], 1) x = x - 0.5 y = tf.convert_to_tensor(y) y = tf.cast(y,dtype=tf.float32) return x2, y train_db = tf.data.Dataset.from_tensor_slices((train_image, train_label)) train_db = train_db.shuffle(100).map(preprocess).batch(args.batch_size) test_db = tf.data.Dataset.from_tensor_slices((test_image, test_label)) test_db = test_db.map(preprocess).batch(args.batch_size) model = ResNet18([2, 2, 2, 2]) model.build(input_shape=(args.batch_size, 32, 32, 1)) model.compile(optimizer = tf.keras.optimizers.Adam(lr = 1e-3), loss = tf.keras.losses.MSE, metrics = ['MSE']) checkpoint_save_path = "./checkpoint/InceptionNet_im_3/checkpoint.ckpt" if os.path.exists(checkpoint_save_path+'.index'): print('------------------load the model---------------------') model.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,save_weights_only=True,save_best_only=True) history = model.fit(train_db, epochs=500, validation_data=test_db, validation_freq=1, callbacks=[cp_callback]) model.summary() acc = history.history['loss'] val_acc = history.history['val_loss'] plt.plot(acc, label='Training MSE') plt.plot(val_acc, label='Validation MSE') plt.title('Training and Validation MSE') plt.legend() plt.show()

最新推荐

recommend-type

HP-Socket编译-Linux

HP-Socket编译-Linux
recommend-type

JavaScript_生活在Discord上的开源社区列表.zip

JavaScript
recommend-type

JavaScript_MultiOn API.zip

JavaScript
recommend-type

JavaScript_简单和完整的React DOM测试工具,鼓励良好的测试实践.zip

JavaScript
recommend-type

JavaScript_成为一个Nodejs开发者.zip

JavaScript
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。