evals=watchlist)
时间: 2024-03-31 10:35:01 浏览: 34
这是一个XGBoost模型中的参数设置,用于在模型训练过程中监控模型的性能。evals参数用于指定需要监控的评估指标,watchlist参数用于指定用于监控评估指标的数据集。具体来说,evals可以设置为一个字典,其中键为数据集名称,值为评估指标;而watchlist则是一个元组,其中第一个元素为训练数据集,第二个元素为评估数据集,用于在训练过程中监控模型在训练数据集和评估数据集上的性能表现。
相关问题
请帮我改写一下代码,用python语言:dtrain = xgb.DMatrix(train.drop(['User_id', 'Coupon_id', 'Date_received', 'label'], axis=1), label=train['label']) dval = xgb.DMatrix(validate.drop(['User_id', 'Coupon_id', 'Date_received', 'label'], axis=1), label=validate['label']) watchlist = [(dtrain, 'train'),(dval, 'val')] model = xgb.train(params, dtrain, num_boost_round=500, evals=watchlist)
下面是用 Python 语言改写后的代码:
``import xgboost as xgb
# 将训练集和验证集中的无用特征删除,并创建 DMatrix 数据集
dtrain = xgb.DMatrix(train.drop(['User_id', 'Coupon_id', 'Date_received', 'label'], axis=1), label=train['label'])
dval = xgb.DMatrix(validate.drop(['User_id', 'Coupon_id', 'Date_received', 'label'], axis=1), label=validate['label'])
# 定义训练过程中需要监测的指标
evals_result = {}
# 设置参数和监测器
params = {'max_depth': 5, 'eta': 0.1, 'objective': 'binary:logistic'}
watchlist = [(dtrain, 'train'), (dval, 'val')]
# 训练模型
num_round = 500
model = xgb.train(params, dtrain, num_round, watchlist, evals_result=evals_result, verbose_eval=True)
```
修改后,代码首先导入了 xgboost 库,然后使用 `xgb.DMatrix()` 函数将训练集和验证集中的无用特征删除并创建 DMatrix 数据集。接着,定义了需要监测的指标和训练过程中需要使用的参数,之后设置监测器。最后,使用 `xgb.train()` 函数训练模型,并将训练结果保存在 `model` 中。同时,将评估结果保存在 `evals_result` 中,并使用 `verbose_eval=True` 参数来打印训练过程中的信息。
def model_xgb(train, test): """xgb模型 Args: Returns: """ # xgb参数 params = {'booster': 'gbtree', 'objective': 'binary:logistic', 'eval_metric': 'auc', 'silent': 1, 'eta': 0.01, 'max_depth': 5, 'min_child_weight': 1, 'gamma': 0, 'lambda': 1, 'colsample_bylevel': 0.7, 'colsample_bytree': 0.7, 'subsample': 0.9, 'scale_pos_weight': 1} # 数据集 dtrain = xgb.DMatrix(train.drop(['User_id', 'Coupon_id', 'Date_received', 'label'], axis=1), label=train['label']) dtest = xgb.DMatrix(test.drop(['User_id', 'Coupon_id', 'Date_received'], axis=1)) # 训练 watchlist = [(dtrain, 'train')] model = xgb.train(params, dtrain, num_boost_round=500, evals=watchlist) # 预测 predict = model.predict(dtest) # 处理结果 predict = pd.DataFrame(predict, columns=['prob']) result = pd.concat([test[['User_id', 'Coupon_id', 'Date_received']], predict], axis=1) # 特征重要性 feat_importance = pd.DataFrame(columns=['feature_name', 'importance']) feat_importance['feature_name'] = model.get_score().keys() feat_importance['importance'] = model.get_score().values() feat_importance.sort_values(['importance'], ascending=False, inplace=True) # 返回 return result, feat_importance解释一下
这段代码是一个自定义的 XGBoost 模型训练函数 `model_xgb`,其主要作用是将训练数据集和测试数据集转换为 XGBoost 可用的数据格式,然后使用 XGBoost 算法对训练数据集进行训练,最后对测试数据集进行预测,并返回预测结果和特征重要性。
具体来说,该函数的实现步骤如下:
1. 定义 XGBoost 模型的参数:包括 `booster`(使用的树模型)、`objective`(目标函数)、`eval_metric`(评价指标)、`eta`(学习率)、`max_depth`(树的最大深度)等。
2. 将训练数据集和测试数据集转换为 XGBoost 可用的数据格式。使用 `xgb.DMatrix` 函数将数据集转换为 DMatrix 对象,其中训练数据集需要包含标签列 `label`,而测试数据集则不需要。
3. 使用 XGBoost 的 `train` 函数对模型进行训练,需要指定训练数据集、模型参数、迭代次数等。
4. 使用训练好的模型对测试数据集进行预测,得到预测结果。将预测结果和测试数据集中的 `User_id`、`Coupon_id`、`Date_received` 列进行合并,得到最终的预测结果。
5. 使用 XGBoost 的 `get_score` 函数获取特征重要性,并将其保存为一个 DataFrame 对象,包括每个特征的名称和重要性值。
6. 最后,将预测结果和特征重要性返回。
通过自定义的 XGBoost 模型训练函数,可以方便地进行模型训练和预测,并获取特征重要性信息,便于后续的特征选择和优化。
阅读全文