用python写手势识别控制机器臂运动的代码
时间: 2024-03-10 14:46:42 浏览: 65
Python实现手势识别
好的,这里给您提供一个简单的基于Python的手势识别控制机器臂运动的代码示例:
```python
import cv2
import numpy as np
import pyrealsense2 as rs
import serial
# 初始化串口通信
ser = serial.Serial('/dev/ttyUSB0', 9600)
# 定义手势识别函数
def recognize_gesture(frame):
# 对图像进行处理
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
ret, thresh = cv2.threshold(blur, 50, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 寻找最大轮廓
max_area = 0
ci = 0
for i in range(len(contours)):
cnt = contours[i]
area = cv2.contourArea(cnt)
if area > max_area:
max_area = area
ci = i
cnt = contours[ci]
# 将轮廓逼近为多边形
hull = cv2.convexHull(cnt)
epsilon = 0.1 * cv2.arcLength(hull, True)
approx = cv2.approxPolyDP(hull, epsilon, True)
# 判断手势类型
if len(approx) == 4:
return "open"
elif len(approx) == 7:
return "close"
else:
return "unknown"
# 初始化摄像头
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
pipeline.start(config)
try:
while True:
# 读取摄像头数据
frames = pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
if not color_frame:
continue
frame = np.asanyarray(color_frame.get_data())
# 进行手势识别
gesture = recognize_gesture(frame)
# 发送控制指令
if gesture == "open":
ser.write(b'1')
elif gesture == "close":
ser.write(b'2')
# 显示图像
cv2.imshow("frame", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
finally:
pipeline.stop()
cv2.destroyAllWindows()
```
注意,这是一个简单的示例代码,您需要根据实际情况进行修改和优化。同时,还需要使用串口通信将识别结果发送给机器臂控制系统,从而实现对机器臂运动的控制。
阅读全文