gain = np.random.rayleigh(scale=1, size=None)*pow(10,(-Avg_Los/10))这段代码反应的公式
时间: 2024-02-26 20:54:53 浏览: 137
这段代码反映的公式是无线电传播模型中的自由空间路径损耗模型,其中 gain 是接收天线的增益,np.random.rayleigh 是生成射线信道中的瑞利衰落信号的函数,scale=1 表示瑞利衰落的标准差为 1,size=None 表示生成的样本数为 1。pow(10,(-Avg_Los/10)) 表示平均路损与单位距离上功率损耗之比的负数,单位为分贝(dB)。通过这段代码可以生成一个接收信号的增益值,用于计算接收信号的功率。
相关问题
import numpy as np import matplotlib.pyplot as plt import sympy from scipy.interpolate import interp1d gamma = 1.2 R = 8.314 T0 = 500 Q = 50 * R * T0 a0 = np.sqrt(gamma * R * T0) M0 = 6.216 P_P0 = sympy.symbols('P_P0') num = 81 x0 = np.linspace(0,1,num) t_t0 = np.linspace(0,15,num) x = x0[1:] T_T0 = t_t0[1:] h0 = [] h1 = []#创建拉姆达为1的空数组 r = [] t = [] c = [] s = [] i = 0 for V_V0 in x: n1 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 0 * Q / a0 ** 2,P_P0)#lamuda=0的Hugoniot曲线方程 n2 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 1 * Q / a0 ** 2,P_P0)#lamuda=1的Hugoniot曲线方程 n3 = sympy.solve(-1 * P_P0 + 1 - gamma * M0 ** 2 * (V_V0 - 1),P_P0)#Reyleigh曲线方程 n4 = 12.014556 / V_V0#等温线 n5 = sympy.solve((P_P0 - 1 / (gamma+1) )* (V_V0-gamma / (gamma + 1)) - gamma / ((gamma + 1) ** 2),P_P0)#声速线 n6 = 10.6677 / np.power(V_V0,1.2)#等熵线 h0.append(n1) h1.append(n2) r.append(n3) t.append(n4) c.append(n5) s.append(n6) i = i+1 h0 = np.array(h0) h1 = np.array(h1) r = np.array(r) t = np.array(t) c = np.array(c) s = np.array(s) plt.plot(x,r,label='Rayleigh') plt.plot(x,t,color='purple',label='isothermal') plt.plot(x,s,color='skyblue',label='isentropic') a = np.where(h0 < 0) b = np.where(c < 0) h0 = np.delete(h0,np.where(h0 < 0)[0],axis = 0)#去除解小于0的值 h1 = np.delete(h1,np.where(h1 < 0)[0],axis = 0)#去除解小于0的值 c = np.delete(c,np.where(c < 0)[0],axis = 0)#去除解小于0的值 x0 = np.delete(x,a,axis = 0)#对应去除x轴上错误值的坐标 x1 = np.delete(x,b,axis = 0) plt.plot(x0,h0,label='Hugoniot(lambda=0)') plt.plot(x0,h1,label='Hugoniot(lambda=1)') plt.plot(x1,c,color='yellow',label='soniclocus') plt.ylim((0,50)) plt.legend() # 显示图例 plt.xlabel('V/V0') plt.ylabel('P/P0') f1 = interp1d(x1, c.T, kind='cubic') f2 = interp1d(x,r.T,kind='cubic') f3 = interp1d(x, t.T, kind='cubic') epsilon = 0.0001 x0 = 0.56 y0 = f1(x0) - f2(x0) while abs(y0) > epsilon: df = (f1(x0 + epsilon) - f2(x0 + epsilon) - y0) / epsilon x0 -= y0 / df y0 = f1(x0) - f2(x0) plt.scatter(x0, y0, 50, color ='red') plt.show()
这是一个 Python 代码,我可以解读出来。这段代码主要是用来绘制气体动力学中的一些图形,包括 Hugoniot 曲线、Rayleigh 曲线、等温线、等熵线和声速线等等。其中用到了一些科学计算库,比如 numpy、matplotlib、sympy 和 scipy.interpolate。这段代码还包括了一些数据处理的操作,比如删除数组中小于0的值、插值等等。最后,这段代码还用牛顿迭代法求解了两条曲线的交点。
np.random.rayleigh
np.random.rayleigh 是 NumPy 库中的一个函数,用于生成符合瑞利分布的随机数。瑞利分布是一种连续概率分布,常用于描述正值随机变量的概率分布情况。
你可以使用 np.random.rayleigh(scale, size=None) 函数来生成瑞利分布的随机数。其中,scale 参数表示尺度参数,size 参数表示生成随机数的个数或形状。
例如,通过以下代码生成一个符合瑞利分布的随机数:
```python
import numpy as np
# 生成一个符合瑞利分布的随机数
random_number = np.random.rayleigh(scale=2, size=1)
print(random_number)
```
这将生成一个符合瑞利分布、尺度参数为2的随机数。你可以根据需要调整尺度参数和生成的随机数个数来获得不同的结果。
阅读全文