X, y = mglearn.datasets.make_forge() mglearn.plots.plot_linear_regression_wave() from sklearn.linear_model import LinearRegression X, y = mglearn.datasets.make_wave(n_samples=60) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) lr = LinearRegression().fit(X_train, y_train) print("lr.coef_: {}".format(lr.coef_)) print("lr.intercept_: {}".format(lr.intercept_)) print("Training set score: {}".format(lr.score(X_train, y_train))) print("Test set score: {}".format(lr.score(X_test, y_test))) X, y = mglearn.datasets.load_extended_boston() X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) lr = LinearRegression().fit(X_train, y_train) print("Training set score: {}".format(lr.score(X_train, y_train))) print("Test set score: {}".format(lr.score(X_test, y_test))) 对该段代码做出详细解释
时间: 2023-12-24 08:14:13 浏览: 417
RandomForest_sklearn.zip_sklearn_sklearn RF_southern9qq_随机森林
这段代码是一个线性回归的示例,其中包含三个部分:
1. 第一个部分使用mglearn中的make_forge()函数生成一些合成数据,并使用mglearn.plots.plot_linear_regression_wave()函数可视化线性回归模型的预测结果。该部分旨在展示线性回归模型如何处理简单的数据集。
2. 第二个部分使用mglearn.datasets.make_wave()函数生成一个包含60个样本的简单回归数据集。接着,使用train_test_split()函数将数据集分成训练集和测试集。然后,使用LinearRegression()函数创建一个线性回归模型,并使用fit()函数将其拟合到训练数据上。最后,使用score()函数计算模型在训练集和测试集上的R^2分数,并输出结果。这部分旨在展示如何在简单的回归问题上使用线性回归模型,并评估模型的性能。
3. 第三个部分使用mglearn.datasets.load_extended_boston()函数加载一个包含506个样本和105个特征的波士顿房价数据集。接着,使用train_test_split()函数将数据集分成训练集和测试集。然后,使用LinearRegression()函数创建一个线性回归模型,并使用fit()函数将其拟合到训练数据上。最后,使用score()函数计算模型在训练集和测试集上的R^2分数,并输出结果。这部分旨在展示如何在更复杂的回归问题上使用线性回归模型,并评估模型的性能。
阅读全文