帮我用Java写一个实现k匿名的代码
时间: 2023-08-28 22:14:09 浏览: 100
好的,这里给你一个简单的Java代码实现K匿名算法,供你参考:
```java
import java.util.*;
public class KAnonymity {
// 用于存储数据集的列表
private List<Map<String, String>> dataset;
// 敏感性属性的名称
private String sensitiveAttribute;
// 敏感性属性值的敏感性等级
private Map<String, Integer> sensitivityLevels;
// K值
private int k;
/**
* 构造函数,初始化数据集、敏感性属性、敏感性等级和K值
*/
public KAnonymity(List<Map<String, String>> dataset, String sensitiveAttribute, Map<String, Integer> sensitivityLevels, int k) {
this.dataset = dataset;
this.sensitiveAttribute = sensitiveAttribute;
this.sensitivityLevels = sensitivityLevels;
this.k = k;
}
/**
* 实现K匿名算法
*/
public List<Map<String, String>> anonymize() {
List<Map<String, String>> result = new ArrayList<>();
// 循环直到所有记录都被匿名化
while (!dataset.isEmpty()) {
// 筛选出所有未被匿名化的记录
List<Map<String, String>> unanonymizedRecords = getUnanonymizedRecords();
if (unanonymizedRecords.isEmpty()) {
break;
}
// 按照敏感性级别进行排序
Collections.sort(unanonymizedRecords, new RecordComparator(sensitiveAttribute, sensitivityLevels));
// 对于每个等级,将记录按照该属性值进行分组
Map<String, List<Map<String, String>>> groups = new HashMap<>();
for (Map<String, String> record : unanonymizedRecords) {
String sensitiveValue = record.get(sensitiveAttribute);
List<Map<String, String>> group = groups.get(sensitiveValue);
if (group == null) {
group = new ArrayList<>();
groups.put(sensitiveValue, group);
}
group.add(record);
}
// 对于每个分组,检查是否满足K匿名条件,如果不满足,则进行匿名化操作
for (List<Map<String, String>> group : groups.values()) {
if (group.size() < k) {
// 如果分组大小小于K值,则将所有记录通用化敏感属性值
for (Map<String, String> record : group) {
record.put(sensitiveAttribute, "*");
}
result.addAll(group);
} else {
// 如果分组大小大于等于K值,则随机生成虚假值
String sensitiveValue = group.get(0).get(sensitiveAttribute);
List<String> fakeValues = generateFakeValues(sensitiveValue, sensitivityLevels.get(sensitiveValue), k);
for (int i = 0; i < group.size(); i++) {
Map<String, String> record = group.get(i);
record.put(sensitiveAttribute, fakeValues.get(i));
}
result.addAll(group);
}
// 将已匿名化的记录从原始数据集中删除
dataset.removeAll(group);
}
}
return result;
}
/**
* 获取所有未被匿名化的记录
*/
private List<Map<String, String>> getUnanonymizedRecords() {
List<Map<String, String>> unanonymizedRecords = new ArrayList<>();
for (Map<String, String> record : dataset) {
if (!"*".equals(record.get(sensitiveAttribute))) {
unanonymizedRecords.add(record);
}
}
return unanonymizedRecords;
}
/**
* 随机生成虚假值
*/
private List<String> generateFakeValues(String sensitiveValue, int sensitivityLevel, int count) {
List<String> fakeValues = new ArrayList<>();
Random random = new Random();
for (int i = 0; i < count; i++) {
fakeValues.add(generateFakeValue(sensitiveValue, sensitivityLevel, random));
}
return fakeValues;
}
/**
* 随机生成单个虚假值
*/
private String generateFakeValue(String sensitiveValue, int sensitivityLevel, Random random) {
int sensitivityRange = (int) Math.pow(10, sensitivityLevel);
int minValue = Integer.parseInt(sensitiveValue) / sensitivityRange * sensitivityRange;
int maxValue = minValue + sensitivityRange - 1;
return Integer.toString(minValue + random.nextInt(sensitivityRange));
}
/**
* 用于比较记录的类,按照指定属性的敏感性等级进行排序
*/
private class RecordComparator implements Comparator<Map<String, String>> {
private String sensitiveAttribute;
private Map<String, Integer> sensitivityLevels;
public RecordComparator(String sensitiveAttribute, Map<String, Integer> sensitivityLevels) {
this.sensitiveAttribute = sensitiveAttribute;
this.sensitivityLevels = sensitivityLevels;
}
@Override
public int compare(Map<String, String> o1, Map<String, String> o2) {
int level1 = sensitivityLevels.get(o1.get(sensitiveAttribute));
int level2 = sensitivityLevels.get(o2.get(sensitiveAttribute));
return Integer.compare(level2, level1);
}
}
}
```
使用方法:
```java
// 测试数据集
List<Map<String, String>> dataset = new ArrayList<>();
Map<String, String> record1 = new HashMap<>();
record1.put("name", "Alice");
record1.put("age", "20");
record1.put("zip", "12345");
record1.put("gender", "F");
record1.put("salary", "50000");
dataset.add(record1);
Map<String, String> record2 = new HashMap<>();
record2.put("name", "Bob");
record2.put("age", "25");
record2.put("zip", "67890");
record2.put("gender", "M");
record2.put("salary", "60000");
dataset.add(record2);
Map<String, String> record3 = new HashMap<>();
record3.put("name", "Carol");
record3.put("age", "30");
record3.put("zip", "12345");
record3.put("gender", "F");
record3.put("salary", "70000");
dataset.add(record3);
// 敏感性属性和敏感性等级
String sensitiveAttribute = "salary";
Map<String, Integer> sensitivityLevels = new HashMap<>();
sensitivityLevels.put("50000", 1);
sensitivityLevels.put("60000", 2);
sensitivityLevels.put("70000", 3);
// K值
int k = 2;
// 创建KAnonymity对象并执行匿名化
KAnonymity anonymizer = new KAnonymity(dataset, sensitiveAttribute, sensitivityLevels, k);
List<Map<String, String>> result = anonymizer.anonymize();
// 输出匿名化结果
for (Map<String, String> record : result) {
System.out.println(record);
}
```
这里的数据集包含了姓名、年龄、邮编、性别和工资等属性,其中工资是敏感性属性,其敏感性等级由敏感性值决定。K值是2,表示每个分组的大小必须大于等于2。在执行匿名化之后,输出匿名化结果。
阅读全文