c++语言实现FLSR
时间: 2023-06-26 12:03:59 浏览: 91
FLSR(Fuzzy Least Squares Regression)是一种模糊回归分析方法,可以用于处理带有不确定性的数据。下面是一个简单的C++程序,实现FLSR算法:
```c++
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
// 模糊回归分析
class FLSR {
public:
// 计算权重矩阵
void computeWeight(vector<double>& x, double sigma) {
int n = x.size();
W.resize(n);
for (int i = 0; i < n; i++) {
W[i].resize(n);
for (int j = 0; j < n; j++) {
W[i][j] = exp(-(x[i]-x[j])*(x[i]-x[j])/(2*sigma*sigma));
}
}
}
// 计算模糊输出矩阵
void computeFuzzyOutput(vector<double>& y, double alpha) {
int n = y.size();
F.resize(n);
for (int i = 0; i < n; i++) {
F[i].resize(n);
for (int j = 0; j < n; j++) {
F[i][j] = exp(-alpha*(y[i]-y[j])*(y[i]-y[j]));
}
}
}
// 计算系数矩阵
void computeCoeff(vector<double>& x, vector<double>& y, double alpha, double sigma) {
int n = x.size();
computeWeight(x, sigma);
computeFuzzyOutput(y, alpha);
Matrix A(n, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
A(i, j) = W[i][j]*F[i][j];
}
}
Matrix B(n, 1);
for (int i = 0; i < n; i++) {
B(i, 0) = y[i];
}
Matrix C = A.inv() * B;
for (int i = 0; i < n; i++) {
a[i] = C(i, 0);
}
}
// 预测
double predict(double x) {
double y = 0.0;
int n = a.size();
for (int i = 0; i < n; i++) {
y += a[i] * exp(-(x-x[i])*(x-x[i])/(2*sigma*sigma));
}
return y;
}
private:
// 矩阵类
class Matrix {
public:
Matrix(int rows, int cols) {
data.resize(rows);
for (int i = 0; i < rows; i++) {
data[i].resize(cols);
}
this->rows = rows;
this->cols = cols;
}
vector<double>& operator[](int i) {
return data[i];
}
Matrix inv() {
Matrix ret(rows, cols);
double d = det();
if (d == 0.0) {
cerr << "error: singular matrix!" << endl;
exit(1);
}
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
Matrix tmp(rows-1, cols-1);
int r = 0;
for (int k = 0; k < rows; k++) {
if (k == i) {
continue;
}
int c = 0;
for (int l = 0; l < cols; l++) {
if (l == j) {
continue;
}
tmp[r][c] = data[k][l];
c++;
}
r++;
}
ret[j][i] = tmp.det() / d;
if ((i+j) % 2 == 1) {
ret[j][i] = -ret[j][i];
}
}
}
return ret;
}
double det() {
if (rows != cols) {
cerr << "error: non-square matrix!" << endl;
exit(1);
}
if (rows == 1) {
return data[0][0];
}
if (rows == 2) {
return data[0][0]*data[1][1] - data[0][1]*data[1][0];
}
double ret = 0.0;
for (int i = 0; i < cols; i++) {
Matrix tmp(rows-1, cols-1);
int r = 0;
for (int j = 1; j < rows; j++) {
int c = 0;
for (int k = 0; k < cols; k++) {
if (k == i) {
continue;
}
tmp[r][c] = data[j][k];
c++;
}
r++;
}
ret += data[0][i] * tmp.det() * (i%2==0 ? 1 : -1);
}
return ret;
}
private:
vector<vector<double>> data;
int rows, cols;
};
vector<vector<double>> W; // 权重矩阵
vector<vector<double>> F; // 模糊输出矩阵
vector<double> a; // 系数矩阵
double sigma = 0.5; // 权重矩阵的标准差
double alpha = 1.0; // 模糊输出矩阵的参数
};
int main() {
vector<double> x = {1, 2, 3, 4, 5};
vector<double> y = {2.1, 4.2, 6.5, 8.4, 10.4};
FLSR flsr;
flsr.computeCoeff(x, y, 1.0, 0.5);
cout << "系数矩阵: ";
for (auto i : flsr.a) {
cout << i << " ";
}
cout << endl;
cout << "预测值: " << flsr.predict(6) << endl;
return 0;
}
```
该程序实现了FLSR算法,并在一个简单的数据集上进行了测试。程序的输入是一组x和y的值,以及权重矩阵的标准差sigma和模糊输出矩阵的参数alpha。输出是系数矩阵和给定x值的预测y值。
阅读全文