请编写基于pythorch的maskrcnn网络
时间: 2024-05-16 20:16:10 浏览: 113
以下是基于PyTorch的Mask R-CNN网络的示例代码:
```python
import torch
import torchvision
# 定义模型
class MaskRCNN(torch.nn.Module):
def __init__(self, num_classes):
super(MaskRCNN, self).__init__()
# 加载预训练的ResNet50模型
self.backbone = torchvision.models.resnet50(pretrained=True)
# 修改ResNet50最后一层为适合目标检测的卷积层
in_features = self.backbone.fc.in_features
self.backbone.fc = torch.nn.Conv2d(in_features, in_features, kernel_size=1)
# 定义RPN网络
self.rpn = torchvision.models.detection.rpn.RegionProposalNetwork(
in_channels=in_features,
out_channels=256,
anchor_generator=torchvision.models.detection.anchor_utils.AnchorGenerator(
sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),)
),
box_coder=torchvision.models.detection.rpn.BoxCoder(
torchvision.models.detection.transforms.BboxTransform(
mean=[0, 0, 0, 0], std=[1, 1, 1, 1]
)
),
head=torchvision.models.detection.rpn.RPNHead(
in_channels=256,
num_anchors=3
)
)
# 定义RoI头网络
self.roi_heads = torchvision.models.detection.maskrcnn.MaskRCNNHeads(
in_channels=in_features,
num_classes=num_classes,
box_predictor=torchvision.models.detection.maskrcnn.MaskRCNNPredictor(
in_channels=in_features,
num_classes=num_classes
)
)
def forward(self, x, targets=None):
# 特征提取
features = self.backbone(x)
# RPN网络
proposals, proposal_losses = self.rpn(images, features, targets)
# RoI头网络
detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)
# 如果是训练模式,计算总损失
if self.training:
loss_dict = {}
loss_dict.update(proposal_losses)
loss_dict.update(detector_losses)
return loss_dict
# 如果是推理模式,返回检测结果
return detections
```
此代码是一个简单的Mask R-CNN网络,包括ResNet50作为骨干网络、RPN网络、RoI头网络。你可以根据自己的需求修改它来更好地满足你的目标检测任务。
阅读全文