gru模型交通量预测MAPE代码
时间: 2023-06-26 12:06:36 浏览: 98
这里是一个使用GRU模型进行交通量预测的MAPE计算的代码示例:
```python
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import GRU, Dense
from sklearn.metrics import mean_absolute_percentage_error
# 读取数据
data = pd.read_csv('traffic_data.csv')
# 数据预处理
train_len = int(len(data) * 0.8)
train_data = data.iloc[:train_len, :]
test_data = data.iloc[train_len:, :]
train_x, train_y = train_data.iloc[:, :-1].values, train_data.iloc[:, -1].values
test_x, test_y = test_data.iloc[:, :-1].values, test_data.iloc[:, -1].values
train_x = np.reshape(train_x, (train_x.shape[0], 1, train_x.shape[1]))
test_x = np.reshape(test_x, (test_x.shape[0], 1, test_x.shape[1]))
# 构建GRU模型
model = Sequential()
model.add(GRU(units=50, activation='relu', input_shape=(1, train_x.shape[2])))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练模型
model.fit(train_x, train_y, epochs=50, batch_size=72, validation_data=(test_x, test_y), verbose=2)
# 预测测试集数据
test_predict = model.predict(test_x)
# 计算MAPE
mape = mean_absolute_percentage_error(test_y, test_predict)
print('MAPE:', mape)
```
其中,假设数据集文件名为`traffic_data.csv`,数据集中最后一列为目标变量,其余为特征变量。首先读取数据,然后将其划分为训练集和测试集,并将特征变量进行reshape。接着构建GRU模型,编译并训练。最后使用训练好的模型进行预测,并计算MAPE。注意,此代码示例没有进行特征工程等其他预处理步骤,具体根据实际情况进行调整。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)