matlab 求两离散曲线交点

时间: 2023-07-13 15:30:38 浏览: 639
要求两个离散曲线的交点,可以采用以下步骤: 1. 将两个曲线用 plot 函数分别画出来。 2. 对于每个曲线,用 diff 函数求出其 y 值的一阶差分,即得到一个向量。 3. 对于每个曲线的差分向量,用 find 函数找到向量中为零的位置,即得到交点在 x 轴上的坐标。 4. 将两个曲线的交点在 x 轴上的坐标进行比较,得到它们在 y 轴上的坐标。 5. 可以用 scatter 函数将交点画出来。 以下是一个示例代码: ```matlab x1 = 1:0.5:10; % 第一个曲线的 x 坐标 y1 = sin(x1); % 第一个曲线的 y 坐标 x2 = 1:0.5:10; % 第二个曲线的 x 坐标 y2 = cos(x2); % 第二个曲线的 y 坐标 plot(x1, y1, x2, y2); % 画出两个曲线 diff1 = diff(y1); % 第一个曲线的差分向量 diff2 = diff(y2); % 第二个曲线的差分向量 idx1 = find(diff1 == 0); % 第一个曲线的交点的 x 坐标 idx2 = find(diff2 == 0); % 第二个曲线的交点的 x 坐标 x_intersect = intersect(idx1, idx2); % 交点的 x 坐标 y_intersect1 = y1(x_intersect); % 第一个曲线的交点的 y 坐标 y_intersect2 = y2(x_intersect); % 第二个曲线的交点的 y 坐标 scatter(x_intersect, y_intersect1); % 画出第一个曲线的交点 scatter(x_intersect, y_intersect2); % 画出第二个曲线的交点 ``` 上述代码中,我们首先用 plot 函数画出两个曲线,然后用 diff 函数求出它们的差分向量,再用 find 函数找到差分向量中为零的位置,即为交点在 x 轴上的坐标。最后,我们将交点在 x 轴上的坐标进行比较,得到它们在 y 轴上的坐标,并用 scatter 函数将交点画出来。
阅读全文

相关推荐

m
matlab离散点连成的两曲线的交点-intersections.m 本帖最后由 kastin 于 2012-12-29 11:47 编辑 引言     曾经思考过曲面求交,结果发现是学术界的一个难题,并且也想出了一个当前广泛使用方法原理一样的近似解法(追踪法)。当然网上也有很多方法,只不过那些方法非常粗糙,无非就是meshgrid出离散网格,比较两曲面在某位置的坐标是否在某一精度范围内,然后标记显示之。这个方法仅仅当离散网格非常细的时候才比较精确。除此之外,还有个非常严重的问题:上面的“精度范围”不是你随心所欲给的,而且也没规律寻找,当给得不恰当的时候,在格点处两曲面点作比较,会出很多个符合要求的点,或者一个也没有。这样就会使得交线非常曲折,甚至断裂等,严重影响精确度。 ———————————————————分割线————————————————————————     当然,既然有曲面求交,那么也有曲线求交,其基本结构就是两曲线求交。只是曲线求交问题,事先得澄清一些注意点:     1. 数学分析层面求两曲线交点,其实就是方程组求解;     2. “曲线”概念包括“直线”(处处曲率半径为无穷大);     3. Matlab的重点是离散点 矩阵运算,因此所有运算都是基于离散的,因而这里的曲线并不是绝对光滑的。     4. 近似试探与未知函数表达式。 对于1,我想说的是,如果你想要求得两曲线的精确交点,并且一个不漏,那就直接求解方程组,不用看本帖下文; 对于2,直线在Matlab里面是两个点确定,因此交点如果是一段线(无穷个点)的情况,可能只是显示两端点为交点; 对于3,很简单的例子,参数方程 x=cos,y=sin 在数学分析(即连续空间)层面上是个圆,但是如果你在离散t的时候,间距比较大,那么最后Matlab绘制的图像不是圆,而是正多边形了。因此,此时我们讨论曲线交点是这个离散点连线的图形与其他图形的交点,而非圆与其他交点。这也是我在标题中加了“离散点连成”的修饰词,防止被误会。 对于4,既然是求曲线交点,那么本方法可以作为求方程组的近似解。当然,如果离散点够多,解的精确度可以保证,不过不能保证一个不漏。另外就是,对于一组离散点构成的曲线,很难知道它们的解析表达式,因此想通过非线性方程组求解的方法来求交点,就不大可能了(不过你可以用曲线拟合出函数解析式),因此,本帖的方法将会是一个较为有效求交点的方法。     废话了那么多,下面就说说曲线求交点的方法吧。除了求解方程组,很多人想到的方法就是“离散点 判断距离是否足够接近”,这个方法原理跟引言中曲面求交的方法是一样的。因此缺点也是一样的——太粗糙了。网上这种方法的代码也很多,这里就不上了。 下面将阐述我的方法以及给出例子代码。     我有两种思路,一种是高级绘图层面的(不涉及到底层操作),一种是底层的。我只给出了第一种的代码,因为我不会底层操作。     思路一:既然matlab曲线绘图是通过有序离散点依次连线形成,也就是说,通过“以直代曲”的过程,那么曲线交点无非就是离散点(结点)或者两线段交点。这比上面直接用交点附近的结点替代交点的方法要精确得多了。而两直线交点很容易求,只要知道四个点坐标,那么交点精确坐标自然可以表示出来。这就是求交点的原理。只是还有一些细节处理和要注意的地方,我会留到后面再详细说。     思路二:仔细观察两曲线交点的特性,很容易发现,其实交点就是操作系统底层绘图重叠的那些像素点。因此,只要给要绘制的像素点做个标记,将那些重合的点突出显示(比如换个颜色),那么就相当于显示出交点了。这种方法由于是本质性的,因此不会遗漏任何交点,而且精确度极高,适用范围广。Matlab提供的plot plot3 surf等绘图函数都属于高级绘图,底层绘图(或称低级绘图)只有line surface以及patch等少数函数。但是,这里的“底层”并非真正的底层,因为它还是经过封装了的,而C 的MFC里面直接用刷子绘图,那才是依靠操作系统完成的真正的“底层”绘图操作(包括所有窗口都是操作系统绘制的)。这里扯远了,想要说明的就是底层绘图的概念而已。只是我不会用matlab实现这些底层绘图。     上面说了思路,下面就详细说说一些注意点和需要处理的细节。     为了算法的健壮性,就必须考虑各种奇异的情况,防止bug。我们要考虑曲线有分支(很多代数曲线是这样的,代数几何里面研究的东西)、间断跳跃(有绝对值函数或者存在渐近线情况)、首尾是交点、在切点相交,等等这些情况。而且对于定位交点处附近的四个最近端点也是个问题(因为这里存在一个情况,如果曲线1上的一条线段与曲线2上的两条或者以上的线段相交,我的程序因为这个问题没能有效解决,出现在一些非常特殊的情况下会遗漏部分交点)。上面的情况如果不考虑,那么你的程序就会出现各种各样的问题。     对于通常情况,我考虑使用变号法则来判断交点(也就是高数里面“连续函数变号端点内存在零点”),对于上面说的特殊情况,那么预先处理,比如先看是否存在eps内的,或者为零的结点,有则直接记录,没有的话,通过两线段求交来确定交点。至于遍历顺序的问题,为了简便,我指考虑两曲线离散点个数相同的情况(因为不同的话,会出现一些无法处理的情况),而且优先考虑离散点的坐标值中x或者y都相同的情况(比如x=0:0.1:pi; y1=sin, y2=x.^2这两条曲线的x值相同分布)。 下面是曲线y=cos.*exp)与y2=sin.^2 cos在[0:pi/18:2*pi]区间内的交点的代码: 注意:我没有写成接口的形式,虽然对于比那些较懒的人来说不太方便,但是这样做是为了让你能更好弄懂原理,并能自己改造代码。因此,下面的代码可以稍作修改,就能解决别的曲线求交点。这样,不愿思考的懒人就没法达到自己的目的了~% 绘制两离散曲线的交点 % 注意: %   1. 这里的“交点”指的是离散点连线绘出的图形的交点,而非函数或者方程理论分析上的交点, %      因此,这个程序不能作为求根来用。 %   2. 要求两曲线的离散点的个数一样。 %   3. 两个曲线出现参数方程的话,大多数情况正常。但是经测试发现,对于某些非常特殊的情况会出现bug, %      除非调用ezplot的数据(xdata,ydata)。 % %   by kastin @Mar 21, 2012 clear; debug=false; %关闭显示求交点过程 % 曲线1 x=0:pi/18:2*pi; y=cos.*exp); % 曲线2 [x1 N]=sort;  %此处对于C1参数方程,C2为显式函数;或者均为参数方程时候有用 % 下面几句代码在本个案下没有什么特殊作用,但是当出现参数方程的时候,下面的方法改动一下就会有用。 y1=sin.^2 cos; %用于作图 x2=x; y2=sin.^2 cos; %用于寻点 h=plot; y<=eps)=0; y20; neg=cy<=0; %确定变号位置 fro=diff~=0; %变号的前导位置 rel=diff~=0; %变号的尾巴位置 zpf=find; %记录索引 zpr=find 1; %记录索引 zpfr=[zpf; zpr]; hold on % 观看求交点过程 if debug, hp=plot,y,'r.-',x2,y2,'g.-'); end %线性求交 x0=.*-y)-x.*-y))./ y2-y-y2); y0=y ).*-y)./-x); if any), y0=y2; end %加入已经判断为零的位置 x0=[x<=eps) x0].'; y0=[y<=eps) y0].'; hc=plot; %绘制交点 if debug, legend;hp],'C1','C2','交点','微线段1','微线段2',0); end legend xlabel, ylabel, zlabel; title axis equal hold off disp disp) %排除重复的点复制代码经测试十几种奇怪的曲线相交(包括参数方程形式的曲线),目前发现上述代码的方法有四种情况会出现遗漏一两个交点。(其实上面代码本意是求显式函数的曲线交点,或者未知表达式的离散点曲线的交点,并未针对参数方程,隐函数方程做优化,但是可以凑合着用用。)

大家在看

recommend-type

Digital Fundamentals 10th Ed (Solutions)- Floyd 数字电子技术第十版答案

数字电子技术 第十版 答案 Digital Fundamentals 10th Ed (Solutions)- Floyd
recommend-type

建模-牧场管理

对某一年的数学建模试题牧羊管理进行深入解析,完全是自己的想法,曾获得北方工业大学校级数学建模唯一的一等奖
recommend-type

Advanced Data Structures

高级数据结构 Advanced Data Structures
recommend-type

python爬虫1688一件代发电商工具(一)-抓取商品和匹配关系

从淘管家-已铺货商品列表中导出商品id、导出1688和TB商品的规格匹配关系,存入数据库用作后续的数据分析和商品数据更新 使用步骤: 1.搭建python环境,配置好环境变量 2.配置数据库环境,根据本地数据库连接修改albb_item.py中的数据库初始化参数 3.下载自己浏览器版本的浏览器驱动(webdriver),并将解压后的驱动放在python根目录下 4.将淘管家首页链接补充到albb_item.py的url参数中 5.执行database/DDL中的3个脚本进行数据库建表和数据初始化 6.运行albb_item.py,控制台和数据库观察结果 报错提示: 1.如果浏览器窗口能打开但没有访问url,报错退出,检查浏览器驱动的版本是否正确 2.代码中有红色波浪线,检查依赖包是否都安装完 ps:由于版权审核原因,代码中url请自行填写
recommend-type

普通模式电压的非对称偏置-fundamentals of physics 10th edition

图 7.1 典型的电源配置 上面提到的局部网络的概念要求 不上电的 clamp-15 收发器必须不能降低系统的性能 从总线流入不 上电收发器的反向电流要尽量低 TJA1050 优化成有 低的反向电流 因此被预定用于 clamp-15 节点 在不上电的时候 收发器要处理下面的问题 普通模式信号的非对称偏置 RXD 显性箝位 与 Vcc 逆向的电源 上面的问题将在接下来的章节中讨论 7.1 普通模式电压的非对称偏置 原理上 图 7.2 中的电路根据显性状态的总线电平 给普通模式电压提供对称的偏置 因此 在隐性 状态中 总线电压偏置到对称的 Vcc/2 在不上电的情况下 内部偏置电路是总线向收发器产生显著反向电流的原因 结果 隐性状态下的 DC 电压电平和普通模式电压都下降到低于 Vcc/2 的对称电压 由于 TJA1050 的设计在不上电的情况下 不会 向总线拉电流 因此 和 PCA82C250 相比 TJA1050 的反向电流减少了大约 10% 有很大反向电流的早期收发器的情况如图 7.3 所示 它显示了在报文开始的时候 CANH 和 CANL 的 单端总线电压 同时也显示了相应的普通模式电压

最新推荐

recommend-type

MATLAB Delaunay算法提取离散点边界的方法

MATLAB Delaunay 算法提取离散点边界的方法 一、前言 MATLAB Delaunay 算法是一种常用的边界提取方法,广泛应用于计算机视觉、图像处理、机器学习等领域。该算法可以从离散点数据中提取出边界信息,具有重要的研究...
recommend-type

matlab读取串口数据并显示曲线的实现示例

在MATLAB中,读取串口数据并将其可视化地显示为曲线是一项常见的任务,尤其在与硬件设备(如单片机)进行交互时。本文将详细介绍如何使用MATLAB实现这一功能,通过一个具体的示例来展示如何接收串口数据并绘制实时...
recommend-type

Java源码ssm框架医院预约挂号系统-毕业设计论文-期末大作业.rar

本项目是一个基于Java源码的SSM框架医院预约挂号系统,旨在利用现代信息技术优化医院的挂号流程,提升患者就医体验。系统采用了Spring、Spring MVC和MyBatis三大框架技术,实现了前后端的分离与高效交互。主要功能包括用户注册与登录、医生信息查询、预约挂号、挂号记录查看以及系统管理等。用户可以通过系统便捷地查询医生的专业背景和出诊时间,并根据自己的需求进行预约挂号,避免了长时间排队等候的不便。系统还提供了完善的挂号记录管理,用户可以随时查看自己的预约情况,确保就医计划的顺利执行。此外,系统管理模块支持管理员对医生信息和挂号数据进行维护和管理,确保系统的稳定运行和数据的准确性。该项目不仅提升了医院的运营效率,也为患者提供了更加便捷的服务体验。项目为完整毕设源码,先看项目演示,希望对需要的同学有帮助。
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【热传递模型的终极指南】:掌握分类、仿真设计、优化与故障诊断的18大秘诀

![热传递模型](https://study.com/cimages/videopreview/radiation-heat-transfer-the-stefan-boltzmann-law_135679.png) # 摘要 热传递模型在工程和物理学中占有重要地位,对于提高热交换效率和散热设计至关重要。本文系统性地介绍了热传递模型的基础知识、分类以及在实际中的应用案例。文章详细阐述了导热、对流换热以及辐射传热的基本原理,并对不同类型的热传递模型进行了分类,包括稳态与非稳态模型、一维到三维模型和线性与非线性模型。通过仿真设计章节,文章展示了如何选择合适的仿真软件、构建几何模型、设置材料属性和