matlab实现parzen窗
时间: 2023-07-13 13:05:34 浏览: 189
Parzen窗是一种非参数密度估计方法,可以用来估计概率密度函数。下面是MATLAB实现Parzen窗的示例代码:
```matlab
% 定义样本数据
data = [1.2, 2.3, 4.5, 2.0, 1.8, 3.6, 5.0, 2.6, 3.7, 4.2];
% 定义窗口宽度和步长
h = 0.5;
step = 0.1;
% 定义估计点
x = 0:step:6;
% 计算每个估计点处的概率密度
pdf = zeros(1, length(x));
for i = 1:length(x)
xi = x(i);
s = 0;
for j = 1:length(data)
s = s + normpdf((xi - data(j)) / h);
end
pdf(i) = s / (length(data) * h);
end
% 绘制概率密度函数图像
plot(x, pdf, 'LineWidth', 2);
xlabel('x');
ylabel('Probability density');
```
在上面的代码中,我们首先定义了样本数据,然后定义了窗口宽度和步长。接着,我们定义了估计点,计算每个估计点处的概率密度,并绘制概率密度函数的图像。其中,`normpdf`是MATLAB内置的高斯概率密度函数,用于计算每个样本点处的高斯核函数值。
相关问题
使用Matlab实现Parzen窗实验,其中:(1)N=10 h= 0.25 , 1, 4;(2)N=100 h= 0.25 , 1, 4;(3)N=1000 h= 0.25 , 1, 4
以下是一个简单的Matlab代码实现Parzen窗实验:
% 生成数据
data = [randn(1,10); randn(1,10)+3; randn(1,10)+6];
% 绘制原始数据散点图
figure
scatter(data(1,:),zeros(1,10),'r')
hold on
scatter(data(2,:),zeros(1,10),'g')
scatter(data(3,:),zeros(1,10),'b')
% 定义核函数
function y = kernel(x)
y = zeros(size(x));
y(abs(x)<=0.5) = 1;
end
% 定义Parzen窗函数
function y = parzen(x, data, h)
n = size(data,2);
y = zeros(size(x));
for i = 1:length(x)
for j = 1:n
y(i) = y(i) + kernel((x(i)-data(j))/h);
end
y(i) = y(i)/(n*h);
end
end
% 绘制Parzen窗函数图像
x = -5:0.1:11;
h = [0.25 1 4];
for i = 1:length(h)
y = parzen(x,data,h(i));
plot(x,y,'LineWidth',2)
end
% 添加图例和标签
legend('class 1','class 2','class 3','h=0.25','h=1','h=4','Location','northwest')
xlabel('x')
ylabel('p(x)')
parzen窗matlab
Parzen窗是一种非参数估计方法,用于估计概率密度函数。在Matlab中实现Parzen窗的方法如下:
```matlab
function p = Parzen1(x,h,N)
f = x(1:1000);
f = sort(f);
b = 0;
h1 = h;
for i=1:1000
for j=1:N
b = b + exp(((x(j)-f(i))/h1).^2/(-2))/sqrt(2*pi)/h1;
end
p(i) = b/N;
b = 0;
end
end
```
这个函数用于计算符合某种概率密度分布的数据在Parzen窗内的估计概率。其中,x是输入的数据,h是窗长度,N是数据长度。
阅读全文
相关推荐















