多目标鲸鱼优化算法原始代码
时间: 2023-07-23 19:31:14 浏览: 196
鲸鱼优化算法python源代码
5星 · 资源好评率100%
由于多目标鲸鱼优化算法(Multi-Objective Whale Optimization Algorithm,MOWOA)的原始代码实现较为复杂,这里只能提供其基本思路和伪代码。
MOWOA算法的基本思路如下:
1. 初始化鲸群,每只鲸鱼的位置由一组决策变量表示;
2. 计算每只鲸鱼的适应度,即多个目标函数值;
3. 根据适应度值对鲸鱼进行排序,选出最优的若干个鲸鱼作为领导鲸;
4. 根据领导鲸的位置和一个随机向量,更新其他鲸鱼的位置;
5. 重复步骤2至4,直到满足停止条件。
以下是MOWOA算法的伪代码:
```
Input:
numWhales: 鲸鱼数量
numIterations: 迭代次数
numObjectives: 目标函数个数
lb, ub: 决策变量的上下界
alpha: 更新位置时的缩放因子
beta: 更新位置时的移动步长
gamma: 更新位置时的随机项权重
Output:
X: 最优解的位置
F: 最优解的目标函数值
1. 初始化鲸群
for i = 1 to numWhales do
for j = 1 to numObjectives do
x(i, j) = lb(j) + (ub(j) - lb(j)) * rand()
end for
end for
2. 计算适应度
for i = 1 to numWhales do
for j = 1 to numObjectives do
f(i, j) = obj(j, x(i, :))
end for
end for
3. 选择领导鲸
for i = 1 to numIterations do
sort(f, 'descend')
leaders = x(1:k, :)
a = 2 - i * (2 / numIterations) # 控制放大因子a的值
for j = 1 to numWhales do
r1 = rand()
r2 = rand()
A = 2 * a * r1 - a
C = 2 * r2
b = 1
l = (a - 1) * rand() + 1
p = rand()
if p < 0.5 then # 选择随机领导鲸
if abs(A) < 1 then
D = abs(C * leaders(floor(k * rand()) + 1, :) - x(j, :))
x(j, :) = leaders(floor(k * rand()) + 1, :) - A * D
else
D = abs(C * leaders(1, :) - x(j, :))
x(j, :) = leaders(1, :) - A * D
end if
else # 选择最优领导鲸
if abs(A) < 1 then
D = abs(C * leaders(1, :) - x(j, :))
x(j, :) = leaders(1, :) - A * D
else
for k = 1 to numWhales do
b = b + rand()
end for
b = b / numWhales
D = abs(C * leaders(1, :) - x(j, :))
x(j, :) = b * D - A * D
end if
end if
# 位置修正
for k = 1 to numObjectives do
if x(j, k) < lb(k) then
x(j, k) = lb(k)
end if
if x(j, k) > ub(k) then
x(j, k) = ub(k)
end if
end for
end for
# 计算适应度
for j = 1 to numWhales do
for k = 1 to numObjectives do
f(j, k) = obj(k, x(j, :))
end for
end for
end for
4. 返回最优解
[F, idx] = sort(f(:, 1), 'ascend')
X = x(idx(1), :)
```
其中,obj(j, x(i, :))表示第j个目标函数在决策变量为x(i, :)时的函数值,lb和ub分别表示决策变量的上下界,rand()表示均匀分布的随机数。在实际应用中,需要根据具体问题对算法的参数进行调整。
阅读全文