用s-function一个系统的控制器以及自适应律,其中自适应律为向量形式,写一个实例
时间: 2023-06-13 13:03:06 浏览: 307
以下是一个使用S-Function实现控制器和自适应律的示例:
```matlab
function [sys,x0,str,ts] = adaptive_control_sfun(t,x,u,flag,params)
% ADAPTIVE_CONTROL_SFUN S-Function for a system with adaptive controller
% and adaptive law
% The system is described by the following differential equation:
%
% dx/dt = A*x + B*u
%
% The adaptive controller is given by:
%
% u = -K*xhat + r
%
% where K is the feedback gain matrix, xhat is the estimated state,
% and r is the reference input.
%
% The adaptive law is given by:
%
% dtheta/dt = gamma*P'*xtilde
%
% where theta is the vector of adaptive parameters, P is a matrix of
% regressor functions, xtilde is the tracking error, and gamma is a
% positive constant.
%
% The adaptive parameters are updated by:
%
% theta = theta + dtheta*dt
%
% The regressor functions are given by:
%
% P = [phi1(x,u), phi2(x,u), ..., phim(x,u)]
%
% where phi1, phi2, ..., phim are basis functions.
%
% The S-Function takes the following inputs:
%
% u(1) - reference input r
% u(2) - measured output y
%
% and generates the following outputs:
%
% y(1) - control input u
% y(2) - estimated state xhat
%
% The S-Function has the following parameters:
%
% params.A - state matrix A
% params.B - input matrix B
% params.K - feedback gain matrix K
% params.gamma - adaptation rate gamma
% params.phi - basis function handle
% params.theta0 - initial value of adaptive parameters
% params.m - number of basis functions
% params.n - number of states
%
% The S-Function has the following states:
%
% x(1:n) - state vector x
% x(n+1:end) - adaptive parameters theta
%
% The S-Function is called with flag = 0 at initialization and with
% flag = 2 at each simulation step.
switch flag
case 0 % Initialization
[sys,x0,str,ts] = init(params);
case 2 % Simulation step
sys = step(t,x,u,params);
case 3 % Output sizing
sys = sizes(params);
case {1,4,9} % Unused flags
sys = [];
otherwise % Error handling
error(['Unhandled flag = ',num2str(flag)]);
end
function [sys,x0,str,ts] = init(params)
% Initialization function
%
% The initial state is set to zero, and the initial value of the
% adaptive parameters is set to theta0.
n = params.n; % number of states
m = params.m; % number of basis functions
% Initialize state vector x to zero
x0 = zeros(n+m,1);
% Initialize adaptive parameters to theta0
x0(n+1:end) = params.theta0;
% Return system sizes
sizes(params); % call sizing function
% Set sample time
ts = [params.dt 0];
% Set state derivatives to zero
str = [];
% Set output vector to empty
sys = [];
function sys = step(t,x,u,params)
% Simulation step function
%
% The state derivatives are computed using the system equations.
% The control input is computed using the estimated state and the
% feedback gain matrix. The tracking error is computed using the
% reference input and the measured output. The regressor functions
% are computed using the current state and input. The adaptive law
% is computed using the tracking error and the regressor functions.
% The adaptive parameters are updated using the adaptive law.
%
% The estimated state and control input are returned as outputs.
n = params.n; % number of states
m = params.m; % number of basis functions
% Extract input values
r = u(1); % reference input
y = u(2); % measured output
% Extract state and adaptive parameter vectors
xhat = x(1:n); % estimated state
theta = x(n+1:end); % adaptive parameters
% Extract system matrices and vectors
A = params.A;
B = params.B;
K = params.K;
gamma = params.gamma;
phi = params.phi;
% Compute state derivatives
xdot = A*xhat + B*(-K*xhat + r);
% Compute control input
u = -K*xhat + r;
% Compute tracking error
xtilde = xhat - y;
% Compute regressor functions
P = zeros(m,1);
for i = 1:m
P(i) = phi{i}(xhat,u);
end
% Compute adaptive law
dtheta = gamma*P'*xtilde;
% Update adaptive parameters
theta = theta + dtheta*params.dt;
% Update estimated state
xhat = xhat + xdot*params.dt;
% Update state vector
x = [xhat;theta];
% Set output vector
sys = [u;xhat];
function sys = sizes(params)
% Output sizing function
%
% The output vector has two elements: the control input and the
% estimated state.
n = params.n; % number of states
% Set output vector sizes
sys = [2,1,n];
function phi = basis_functions()
% Basis function definition
%
% This function defines the basis functions used in the adaptive law.
% In this example, we use a set of radial basis functions.
phi = {...
@(x,u) exp(-norm(x)^2),...
@(x,u) exp(-norm(x-u)^2),...
@(x,u) exp(-norm(x+u)^2),...
@(x,u) exp(-norm(x-2*u)^2),...
@(x,u) exp(-norm(x+2*u)^2)...
};
end
% Define system parameters
A = [0 1; -1 0];
B = [0; 1];
K = [1 0];
gamma = 0.1;
phi = basis_functions();
theta0 = [1; 1; 1; 1; 1];
m = length(phi);
n = size(A,1);
dt = 0.1;
% Define parameter struct
params.A = A;
params.B = B;
params.K = K;
params.gamma = gamma;
params.phi = phi;
params.theta0 = theta0;
params.m = m;
params.n = n;
params.dt = dt;
% Simulate system using S-Function
sim('adaptive_control_sfun',[0 10],[],params);
% Plot results
t = ans.tout;
u = ans.u;
xhat = ans.xhat;
subplot(2,1,1); plot(t,u); xlabel('Time (s)'); ylabel('Control input');
subplot(2,1,2); plot(t,xhat); xlabel('Time (s)'); ylabel('Estimated state');
```
此示例实现了一个二阶系统的自适应控制器和自适应律,其中自适应律为向量形式。该系统由以下微分方程描述:
$$\frac{d}{dt}\begin{bmatrix}x_1\\x_2\end{bmatrix} = \begin{bmatrix}0&1\\-1&0\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix} + \begin{bmatrix}0\\1\end{bmatrix}u$$
自适应控制器由以下控制律描述:
$$u = -K\hat{x} + r$$
其中$K$是反馈增益矩阵,$\hat{x}$是估计的状态,$r$是参考输入。
自适应律由以下微分方程描述:
$$\frac{d}{dt}\theta = \gamma P^T\tilde{x}$$
其中$\theta$是自适应参数向量,$P$是回归函数矩阵,$\tilde{x}$是跟踪误差,$\gamma$是正常数。自适应参数通过以下更新方程进行更新:
$$\theta = \theta + \frac{d\theta}{dt}\Delta t$$
回归函数由以下基函数定义:
$$\begin{aligned}\phi_1(x,u) &= \exp(-||x||^2)\\\phi_2(x,u) &= \exp(-||x-u||^2)\\\phi_3(x,u) &= \exp(-||x+u||^2)\\\phi_4(x,u) &= \exp(-||x-2u||^2)\\\phi_5(x,u) &= \exp(-||x+2u||^2)\end{aligned}$$
在S-Function中,我们使用以下参数传递系统参数:
```matlab
% Define system parameters
A = [0 1; -1 0];
B = [0; 1];
K = [1 0];
gamma = 0.1;
phi = basis_functions();
theta0 = [1; 1; 1; 1; 1];
m = length(phi);
n = size(A,1);
dt = 0.1;
% Define parameter struct
params.A = A;
params.B = B;
params.K = K;
params.gamma = gamma;
params.phi = phi;
params.theta0 = theta0;
params.m = m;
params.n = n;
params.dt = dt;
```
其中`basis_functions`函数定义了基函数集合。
在S-Function的`init`函数中,我们将状态向量`x`初始化为零,并将自适应参数向量初始化为给定的初始值。
```matlab
function [sys,x0,str,ts] = init(params)
% Initialization function
%
% The initial state is set to zero, and the initial value of the
% adaptive parameters is set to theta0.
n = params.n; % number of states
m = params.m; % number of basis functions
% Initialize state vector x to zero
x0 = zeros(n+m,1);
% Initialize adaptive parameters to theta0
x0(n+1:end) = params.theta0;
% Return system sizes
sizes(params); % call sizing function
% Set sample time
ts = [params.dt 0];
% Set state derivatives to zero
str = [];
% Set output vector to empty
sys = [];
```
在S-Function的`step`函数中,我们使用系统方程计算状态导数,使用估计状态和反馈增益矩阵计算控制输入,使用参考输入和测量输出计算跟踪误差,使用当前状态和输入计算回归函数,使用跟踪误差和回归函数计算自适应律,使用自适应律更新自适应参数,使用状态导数更新估计状态。
```matlab
function sys = step(t,x,u,params)
% Simulation step function
%
% The state derivatives are computed using the system equations.
% The control input is computed using the estimated state and the
% feedback gain matrix. The tracking error is computed using the
% reference input and the measured output. The regressor functions
% are computed using the current state and input. The adaptive law
% is computed using the tracking error and the regressor functions.
% The adaptive parameters are updated using the adaptive law.
%
% The estimated state and control input are returned as outputs.
n = params.n; % number of states
m = params.m; % number of basis functions
% Extract input values
r = u(1); % reference input
y = u(2); % measured output
% Extract state and adaptive parameter vectors
xhat = x(1:n); % estimated state
theta = x(n+1:end); % adaptive parameters
% Extract system matrices and vectors
A = params.A;
B = params.B;
K = params.K;
gamma = params.gamma;
phi = params.phi;
% Compute state derivatives
xdot = A*xhat + B*(-K*xhat + r);
% Compute control input
u = -K*xhat + r;
% Compute tracking error
xtilde = xhat - y;
% Compute regressor functions
P = zeros(m,1);
for i = 1:m
P(i) = phi{i}(xhat,u);
end
% Compute adaptive law
dtheta = gamma*P'*xtilde;
% Update adaptive parameters
theta = theta + dtheta*params.dt;
% Update estimated state
xhat = xhat + xdot*params.dt;
% Update state vector
x = [xhat;theta];
% Set output vector
sys = [u;xhat];
```
最后,我们使用S-Function进行仿真,并绘制结果。
```matlab
% Simulate system using S-Function
sim('adaptive_control_sfun',[0 10],[],params);
% Plot results
t = ans.tout;
u = ans.u;
xhat = ans.xhat;
subplot(2,1,1); plot(t,u); xlabel('Time (s)'); ylabel('Control input');
subplot(2,1,2); plot(t,xhat); xlabel('Time (s)'); ylabel('Estimated state');
```
此示例演示了如何使用S-Function实现具有向量形式自适应律的控制器。
阅读全文