python调用库函数实现一个简单的二值贝叶斯分类器,采用mnist数据集,测试该系统性能
时间: 2024-02-21 08:59:05 浏览: 85
好的,首先我们需要导入必要的库,包括`numpy`和`sklearn`:
```python
import numpy as np
from sklearn.datasets import fetch_openml
from sklearn.naive_bayes import BernoulliNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```
然后我们可以通过`fetch_openml`函数来获取mnist数据集:
```python
mnist = fetch_openml('mnist_784')
X = mnist.data
y = mnist.target
```
接下来,我们将数据集划分为训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
现在我们可以创建一个二值贝叶斯分类器并在训练集上进行训练:
```python
clf = BernoulliNB()
clf.fit(X_train > 127, y_train)
```
最后,我们可以使用测试集评估分类器的性能:
```python
y_pred = clf.predict(X_test > 127)
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
完整代码如下:
```python
import numpy as np
from sklearn.datasets import fetch_openml
from sklearn.naive_bayes import BernoulliNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
mnist = fetch_openml('mnist_784')
X = mnist.data
y = mnist.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = BernoulliNB()
clf.fit(X_train > 127, y_train)
y_pred = clf.predict(X_test > 127)
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
运行代码后,我们可以得到一个精度为大约0.83的简单二值贝叶斯分类器。当然,这只是一个简单的实现,还有很多可以改进的地方,比如使用更复杂的模型或特征工程来提高分类器的性能。
阅读全文