生成代码 利用pytorch实现英雄联盟中的角色识别
时间: 2024-03-18 13:42:04 浏览: 135
以下是用PyTorch实现英雄联盟中的角色识别的示例代码:
1. 数据预处理
```python
import torch
import torchvision
import torchvision.transforms as transforms
# 定义数据预处理
transform = transforms.Compose(
[transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
# 加载数据集
trainset = torchvision.datasets.ImageFolder(root='train/', transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
testset = torchvision.datasets.ImageFolder(root='test/', transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
# 定义类别
classes = ('Assassin', 'Fighter', 'Mage', 'Marksman', 'Support', 'Tank')
```
2. 构建模型
```python
import torch.nn as nn
import torch.nn.functional as F
# 定义神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 53 * 53, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 6)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 53 * 53)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
```
3. 训练模型
```python
import torch.optim as optim
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 200 == 199:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 200))
running_loss = 0.0
```
4. 评估模型
```python
# 预测测试集结果
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
# 计算准确率
accuracy = 100 * correct / total
print('Accuracy: %d %%' % accuracy)
```
这是一个简单的示例,实际中需要根据具体情况进行调整和优化。
阅读全文