java实现dfa化简
时间: 2023-06-17 11:02:21 浏览: 169
DFA(确定有限状态自动机)的化简是将一个复杂的DFA转化为一个更简单的DFA,其实现过程主要有以下几个步骤:
1. 消除不可达状态:从起始状态出发,通过转移函数能够到达的状态称为可达状态,不能到达的状态称为不可达状态。将所有不可达状态删除。
2. 合并等价状态:将可以相互到达的状态合并为一个状态,使得新的DFA中状态数最少。通过等价关系划分算法,对状态进行分组,分组后的状态就是等价状态。
3. 构造化简后的DFA:根据等价状态分组的结果,构造化简后的DFA。
下面是Java实现DFA化简的示例代码:
```java
import java.util.*;
public class DFAMinimization {
public static void main(String[] args) {
int[][] transition = {{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,10},{10,11},{11,12},{12,13},{13,14},{14,15},{15,16},{16,17},{17,18},{18,19},{19,20},{20,21},{21,22},{22,23},{23,24},{24,25},{25,26},{26,27},{27,28},{28,29},{29,30},{30,31},{31,32},{32,33},{33,34},{34,35},{35,36},{36,37},{37,38},{38,39},{39,40},{40,41},{41,42},{42,43},{43,44},{44,45},{45,46},{46,47},{47,48},{48,49},{49,50},{50,51},{51,52},{52,53},{53,54},{54,55},{55,56},{56,57},{57,58},{58,59},{59,60},{60,61},{61,62},{62,63},{63,64},{64,65},{65,66},{66,67},{67,68},{68,69},{69,70},{70,71},{71,72},{72,73},{73,74},{74,75},{75,76},{76,77},{77,78},{78,79},{79,80},{80,81},{81,82},{82,83},{83,84},{84,85},{85,86},{86,87},{87,88},{88,89},{89,90},{90,91},{91,92},{92,93},{93,94},{94,95},{95,96},{96,97},{97,98},{98,99},{99,100},{100,100}};
int[] finalStates = {100};
DFAMinimization dfaMinimization = new DFAMinimization();
dfaMinimization.minimize(transition, finalStates);
}
public void minimize(int[][] transition, int[] finalStates) {
int n = transition.length;
int[][] partition = new int[2][n];
boolean[][] marked = new boolean[n][n];
for (int i = 0; i < n; i++) {
partition[0][i] = i;
for (int j = 0; j < n; j++) {
marked[i][j] = finalStates[i] != finalStates[j];
}
}
boolean changed = true;
while (changed) {
changed = false;
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
if (!marked[i][j]) {
for (int k = 0; k < 2; k++) {
int pi = partition[k][i];
int pj = partition[k][j];
if (pi != pj) {
partition[k][i] = Math.min(pi, pj);
partition[k][j] = Math.min(pi, pj);
changed = true;
}
}
}
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
marked[i][j] = false;
}
}
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
if (!marked[i][j]) {
for (int x = 0; x < 2; x++) {
for (int y = 0; y < 2; y++) {
int pi = partition[x][i];
int pj = partition[y][j];
if (!marked[pi][pj]) {
for (int k = 0; k < n; k++) {
int pk = transition[k][i];
int pl = transition[k][j];
if (marked[pk][pl]) {
marked[pi][pj] = true;
changed = true;
break;
}
}
}
}
}
}
}
}
}
int[] map = new int[n];
Arrays.fill(map, -1);
int count = 0;
for (int i = 0; i < n; i++) {
if (map[i] == -1) {
map[i] = count++;
for (int j = i+1; j < n; j++) {
if (!marked[i][j]) {
map[j] = map[i];
}
}
}
}
int[][] newTransition = new int[n][];
int[] newFinalStates = new int[count];
int newCount = 0;
for (int i = 0; i < count; i++) {
boolean isFinal = false;
for (int j = 0; j < n; j++) {
if (map[j] == i) {
if (finalStates[j] != -1) {
isFinal = true;
}
if (newTransition[i] == null) {
newTransition[i] = new int[n];
}
for (int k = 0; k < n; k++) {
newTransition[i][k] = map[transition[k][j]];
}
}
}
if (isFinal) {
newFinalStates[newCount++] = i;
}
}
newFinalStates = Arrays.copyOf(newFinalStates, newCount);
System.out.println(Arrays.deepToString(newTransition));
System.out.println(Arrays.toString(newFinalStates));
}
}
```
以上代码实现了DFA的化简,其中transition数组表示状态转移矩阵,finalStates数组表示终止状态集合。具体实现过程中,使用等价关系划分算法对状态进行分组,最终得到化简后的DFA状态转移矩阵和终止状态集合。
阅读全文