请用python写一个dbscan三维聚类算法,其中聚类数据从excel中获取
时间: 2024-04-30 21:19:06 浏览: 161
dbscan.zip_dbscan点云_三维 聚类_三维dbscan聚类_三维点云聚类_点云
5星 · 资源好评率100%
好的,首先需要安装pandas和numpy库来读取excel文件和进行数值计算,同时还需要matplotlib库来可视化结果。代码如下:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def dist(p1, p2):
return np.sqrt(np.sum((p1 - p2) ** 2))
def dbscan(data, eps, min_samples):
# 初始化核心点集合和边界点集合
core_points = set()
border_points = set()
noise_points = set()
# 计算点之间的距离矩阵
dist_matrix = np.zeros((len(data), len(data)))
for i in range(len(data)):
for j in range(i+1, len(data)):
d = dist(data[i], data[j])
dist_matrix[i][j] = d
dist_matrix[j][i] = d
# 找到核心点和边界点
for i in range(len(data)):
if len([j for j in range(len(data)) if dist_matrix[i][j] <= eps]) >= min_samples:
core_points.add(i)
elif len([j for j in range(len(data)) if dist_matrix[i][j] <= eps and j in core_points]) > 0:
border_points.add(i)
else:
noise_points.add(i)
# 开始聚类
clusters = []
visited = set()
for i in core_points:
if i not in visited:
cluster = set()
visited.add(i)
cluster.add(i)
while len(cluster) > 0:
j = cluster.pop()
neighbors = set([k for k in range(len(data)) if dist_matrix[j][k] <= eps])
visited.update(neighbors)
if len(neighbors) >= min_samples:
cluster.update(neighbors)
clusters.append(cluster)
# 将边界点分配到聚类中
for i in border_points:
for j in range(len(clusters)):
if len(clusters[j].intersection(set([i]))) > 0:
clusters[j].add(i)
break
return clusters, list(noise_points)
# 从Excel中读取数据
df = pd.read_excel('data.xlsx')
data = df.to_numpy()
# 运行聚类算法
clusters, noise_points = dbscan(data, eps=3, min_samples=3)
print('聚类结果:', clusters)
print('噪声点:', noise_points)
# 可视化聚类结果
colors = ['r', 'g', 'b', 'c', 'm', 'y', 'k']
for i, cluster in enumerate(clusters):
plt.scatter(data[list(cluster), 0], data[list(cluster), 1], c=colors[i%len(colors)])
plt.scatter(data[noise_points, 0], data[noise_points, 1], c='gray')
plt.show()
```
其中 `data.xlsx` 是包含三维数据的Excel文件,`eps` 是邻域半径,`min_samples` 是最小样本数。输出结果包括聚类结果和噪声点,同时还会将聚类结果可视化。
阅读全文