[j for j,x in enumerate(grouthTruth.ravel().tolist()) if x ==i+1]
时间: 2024-05-26 16:12:39 浏览: 178
I'm sorry, the code you provided is incomplete and contains a syntax error. Can you please provide the full code and a description of what you are trying to accomplish so I can assist you better?
相关问题
# Look through unique values in each categorical column categorical_cols = train_df.select_dtypes(include="object").columns.tolist() for col in categorical_cols: print(f"{col}", f"Number of unique entries: {len(train_df[col].unique().tolist())},") print(train_df[col].unique().tolist()) def plot_bar_chart(df, columns, grid_rows, grid_cols, x_label='', y_label='', title='', whole_numbers_only=False, count_labels=True, as_percentage=True): num_plots = len(columns) grid_size = grid_rows * grid_cols num_rows = math.ceil(num_plots / grid_cols) if num_plots == 1: fig, axes = plt.subplots(1, 1, figsize=(12, 8)) axes = [axes] # Wrap the single axes in a list for consistent handling else: fig, axes = plt.subplots(num_rows, grid_cols, figsize=(12, 8)) axes = axes.ravel() # Flatten the axes array to iterate over it for i, column in enumerate(columns): df_column = df[column] if whole_numbers_only: df_column = df_column[df_column % 1 == 0] ax = axes[i] y = [num for (s, num) in df_column.value_counts().items()] x = [s for (s, num) in df_column.value_counts().items()] ax.bar(x, y, color='blue', alpha=0.5) try: ax.set_xticks(range(x[-1], x[0] + 1)) except: pass ax.set_xlabel(x_label) ax.set_ylabel(y_label) ax.set_title(title + ' - ' + column) if count_labels: df_col = df_column.value_counts(normalize=True).mul(100).round(1).astype(str) + '%' for idx, (year, value) in enumerate(df_column.value_counts().items()): if as_percentage == False: ax.annotate(f'{value}\n', xy=(year, value), ha='center', va='center') else: ax.annotate(f'{df_col[year]}\n', xy=(year, value), ha='center', va='center', size=8) if num_plots < grid_size: for j in range(num_plots, grid_size): fig.delaxes(axes[j]) # Remove empty subplots if present plt.tight_layout() plt.show()
这段代码定义了一个名为plot_bar_chart的函数,它可以绘制柱状图。函数的输入包括一个数据框(df)、一个列名的列表(columns)、网格的行数和列数(grid_rows和grid_cols)、x轴和y轴标签(x_label和y_label)、标题(title)、是否只显示整数(whole_numbers_only)、是否在图上显示数据标签(count_labels)、以及是否以百分比形式显示数据标签(as_percentage)。
在函数内部,它首先计算需要绘制的子图的数量,然后根据网格的行数和列数创建子图。接下来,对于每个给定的列名,函数从数据框中选择该列,并将其存储在变量df_column中。如果whole_numbers_only为True,则函数只绘制整数值。接着,函数将x轴和y轴的值分别设置为列中每个唯一值的出现次数和值本身。最后,函数在每个子图上绘制柱状图,并将数据标签添加到每个条形上。如果没有足够的子图来填充整个网格,则函数会删除空的子图以使图像更清晰。
解释一下这段代码import numpy as np import cv2 #光流——空间运动物体在观察成像平面上的像素运动的瞬时速度 cap=cv2.VideoCapture(".\\video2.mp4") #Shi-Tomasi算法检测拐角的参数 feature_params=dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7) lk_params=dict(winSize=(15,15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS|cv2.TERM_CRITERIA_COUNT,10,0.03)) color=np.random.randint(0,255,(100,3)) ret,old_frame=cap.read() old_gray=cv2.cvtColor(old_frame,cv2.COLOR_BGR2GRAY) p0=cv2.goodFeaturesToTrack(old_gray,mask=None,**feature_params) mask=np.zeros_like(old_frame) while(1): ret,frame=cap.read() frame_gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) p1,st,err=cv2.calcOpticalFlowPyrLK(old_gray,frame_gray,p0,None,**lk_params) #Select good points good_new=p1[st==1] good_old=p0[st==1] #draw the tracks for i,(new,old)in enumerate(zip(good_new,good_old)): a,b=new.ravel() c,d=old.ravel() mask=cv2.line(mask,(int(a),int(b)),(int(c),int(d)),color[i].tolist(),2) frame=cv2.circle(frame,(int(a),int(b)),5,color[i].tolist(),-1) img=cv2.add(frame,mask) cv2.imshow('frame',img) k=cv2.waitKey(30)&0xff if k == 27: brreak; #Now update the previous frame and previous points old_gray=frame_gray.copy() p0=good_new.reshape(-1,1,2) cv2.destroyAllWindows() cap.release()
这段代码是在Python中导入了两个库,分别是NumPy和OpenCV,同时为它们取名为“np”和“cv2”。NumPy是Python中用于数学计算和科学计算的库,而OpenCV是计算机视觉领域的一个开源库,提供了许多用于图像和视频处理的功能。在使用这段代码后,我们可以使用它们提供的功能来进行数学计算、图像处理等操作。
阅读全文