num0=125,bin0=50cps,Coeffi=1.25;bin_pluse0 = square(2*pi*linspace(0, 0.25*pi, num0).*bin0*Coeffi);
时间: 2024-01-17 14:15:51 浏览: 110
根据你提供的代码,`bin_pluse0` 是一个方波信号,其频率为 `bin0*Coeffi`,即 `62.5` Hz。方波的周期为 `1/(bin0*Coeffi)`,即 `16 ms`。方波的占空比为 `25%`,即低电平持续时间为 `4 ms`,高电平持续时间为 `12 ms`。该方波信号的振幅为 `1`。在时间轴上,该方波信号的一个周期可以表示为从 `0` 时刻开始的 `16 ms` 时长的信号。
相关问题
bin_pluse0 = square(2*pi*linspace(0, 0.25*pi, num0).*bin0*Coeffi);
这是一个用于计算频率分布直方图的代码行。其中,linspace(0, 0.25*pi, num0)生成一个长度为num0的等差数列,取值范围为0到0.25π;2*pi*linspace(0, 0.25*pi, num0)将该等差数列转换为对应的频率范围,并乘以一个常数2π;bin0是输入数据,表示某一频率出现的次数;Coeffi是系数,用于调整频率分布直方图的形状。最终,bin_pluse0表示经过平方、乘以系数后的频率分布直方图。
Write MATLAB code that implements the parametric bootstrap.Test it using the forearm data.Assume that the normal distribu-tion is a reasonable model for the data.Use your code to get abootstrap estimate of the standard error and the bias of the coeffi-cie
Sure, here is the MATLAB code that implements the parametric bootstrap:
```matlab
% Load forearm data
load forearm
% Define function that fits linear regression model and returns coefficient estimates
fit_lm = @(x, y) [ones(size(x)), x] \ y;
% Define number of bootstrap samples
B = 1000;
% Define empty arrays to store bootstrap estimates
beta0_boot = zeros(B, 1);
beta1_boot = zeros(B, 1);
% Compute original coefficient estimates
beta_orig = fit_lm(forearm(:, 1), forearm(:, 2));
% Compute standard deviation of residuals
resid_std = std(forearm(:, 2) - beta_orig(1) - beta_orig(2) * forearm(:, 1));
% Perform bootstrap
for i = 1:B
% Generate bootstrap sample
y_boot = beta_orig(1) + beta_orig(2) * forearm(:, 1) + randn(size(forearm(:, 1))) * resid_std;
% Fit linear regression model to bootstrap sample
beta_boot = fit_lm(forearm(:, 1), y_boot);
% Store bootstrap estimates
beta0_boot(i) = beta_boot(1);
beta1_boot(i) = beta_boot(2);
end
% Compute bootstrap standard errors and bias
beta0_se = std(beta0_boot);
beta1_se = std(beta1_boot);
beta0_bias = mean(beta0_boot) - beta_orig(1);
beta1_bias = mean(beta1_boot) - beta_orig(2);
% Display results
disp(['Bootstrap standard error of intercept: ', num2str(beta0_se)]);
disp(['Bootstrap standard error of slope: ', num2str(beta1_se)]);
disp(['Bootstrap bias of intercept: ', num2str(beta0_bias)]);
disp(['Bootstrap bias of slope: ', num2str(beta1_bias)]);
```
This code fits a linear regression model to the forearm data using the `fit_lm` function, which simply calls the backslash operator to perform the least squares optimization. It then defines the number of bootstrap samples `B`, and initializes empty arrays to store the bootstrap estimates.
The code then computes the standard deviation of the residuals of the original model, which is used to generate the bootstrap samples. It then iterates over `B` bootstrap samples, generating a new set of observations by adding Gaussian noise to the original predictions based on the standard deviation of the residuals. It fits a new linear regression model to each bootstrap sample, and stores the resulting coefficient estimates.
Finally, the code computes the standard errors and bias of the bootstrap estimates, and displays the results.
阅读全文