请用keras编写一个全连接神经网络, 然后用遗传算法对神经网络的超参数进行优化,要优化的超参数包含每层的神经元个数,层数,学习率,激活函数,请写出代码
时间: 2023-10-26 14:04:42 浏览: 103
基于遗传算法对应用于多元时间序列的自动编码器进行超参数优化附matlab代码.zip
好的,这里是用Keras编写全连接神经网络并使用遗传算法对超参数进行优化的代码示例:
```python
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.activations import relu, sigmoid, softmax
from keras.losses import binary_crossentropy, categorical_crossentropy
from keras.utils import to_categorical
from keras.callbacks import EarlyStopping
# Define the search space for hyperparameters
search_space = {
'num_layers': [1, 2, 3],
'num_neurons': [16, 32, 64],
'learning_rate': [0.001, 0.01, 0.1],
'activation': ['relu', 'sigmoid', 'softmax'],
}
# Define the fitness function for the genetic algorithm
def fitness_function(params):
num_layers = params['num_layers']
num_neurons = params['num_neurons']
learning_rate = params['learning_rate']
activation = params['activation']
# Build the model
model = Sequential()
for i in range(num_layers):
model.add(Dense(num_neurons, activation=activation))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer=Adam(lr=learning_rate), loss=categorical_crossentropy, metrics=['accuracy'])
# Train the model
history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=100, batch_size=64, verbose=0,
callbacks=[EarlyStopping(patience=10, restore_best_weights=True)])
# Evaluate the model on the test set
score = model.evaluate(X_test, y_test, verbose=0)
# Return the negative accuracy as the fitness value (since the genetic algorithm tries to minimize the fitness)
return -score[1]
# Generate the initial population of solutions
population_size = 10
population = []
for i in range(population_size):
params = {
'num_layers': np.random.choice(search_space['num_layers']),
'num_neurons': np.random.choice(search_space['num_neurons']),
'learning_rate': np.random.choice(search_space['learning_rate']),
'activation': np.random.choice(search_space['activation']),
}
population.append(params)
# Run the genetic algorithm for 10 generations
num_generations = 10
for i in range(num_generations):
# Evaluate the fitness of the population
fitness_values = [fitness_function(params) for params in population]
# Select the parents for the next generation
parent_indices = np.random.choice(population_size, size=2, replace=False, p=softmax(fitness_values))
parents = [population[index] for index in parent_indices]
# Generate the offspring using crossover and mutation
offspring = []
for j in range(population_size):
child_params = {}
for key in search_space.keys():
parent_index = np.random.choice(len(parents))
child_params[key] = parents[parent_index][key]
if np.random.uniform() < 0.1:
child_params[key] = np.random.choice(search_space[key])
offspring.append(child_params)
# Replace the population with the offspring
population = offspring
# Evaluate the best solution found by the genetic algorithm
best_params = population[np.argmax(fitness_values)]
num_layers = best_params['num_layers']
num_neurons = best_params['num_neurons']
learning_rate = best_params['learning_rate']
activation = best_params['activation']
# Build and train the final model using the best hyperparameters
model = Sequential()
for i in range(num_layers):
model.add(Dense(num_neurons, activation=activation))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer=Adam(lr=learning_rate), loss=categorical_crossentropy, metrics=['accuracy'])
history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=100, batch_size=64)
```
这个代码示例首先定义了一个超参数搜索空间 `search_space`,包含了每层神经元个数、层数、学习率和激活函数等超参数。然后定义了一个适应度函数 `fitness_function`,它接受一个超参数字典作为输入,根据这些超参数构建一个全连接神经网络,训练并评估模型的性能,最后返回一个负的测试集准确率作为适应度值(因为遗传算法尝试最小化适应度)。
接着,代码生成了一个初始种群,大小为 `population_size`,每个个体都是一个超参数字典。然后运行了一个固定次数的遗传算法循环,每次循环中对种群中的个体进行评估、选择、交叉和变异,生成下一代种群。最终,代码返回了遗传算法搜索到的最优超参数,并使用这些超参数构建、训练和评估了一个最终的全连接神经网络模型。
需要注意的是,这个示例代码中的数据集和相关的代码实现并未给出,需要根据具体的任务和数据集进行修改。
阅读全文