怎么导入波士顿房价数据集
时间: 2023-08-31 20:10:43 浏览: 243
你可以使用 scikit-learn 库中的 load_boston() 函数导入波士顿房价数据集。下面是一个简单的示例代码:
```python
from sklearn.datasets import load_boston
# 加载波士顿房价数据集
boston = load_boston()
# 查看数据集描述
print(boston.DESCR)
# 查看数据集特征
print(boston.feature_names)
# 查看数据集数据
print(boston.data)
# 查看数据集目标变量(房价)
print(boston.target)
```
执行代码后,你将看到波士顿房价数据集的描述、特征、数据和目标变量。可以根据需要对数据进行进一步处理和分析。
相关问题
sklearn导入波士顿房价数据集
sklearn中自带了波士顿房价数据集,可以通过以下代码导入:
```
from sklearn.datasets import load_boston
boston = load_boston()
X = boston.data # 特征矩阵
y = boston.target # 目标向量
```
其中,X是一个13维的特征矩阵,y是一个样本数量为506的目标向量。可以通过以下代码查看数据集的描述:
```
print(boston.DESCR)
```
输出结果如下:
```
.. _boston_dataset:
Boston house prices dataset
---------------------------
**Data Set Characteristics:**
:Number of Instances: 506
:Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.
:Attribute Information (in order):
- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per $10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in $1000's
:Missing Attribute Values: None
:Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.
The Boston house-price data has been used in many machine learning papers that address regression problems.
**References**
- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
panddle导入波士顿房价数据集
抱歉,我是一个语言模型,无法执行导入数据集的操作。但是,您可以使用以下代码将波士顿房价数据集导入Pandas:
```python
import pandas as pd
# 导入数据集
from sklearn.datasets import load_boston
boston = load_boston()
# 将数据集转换为Pandas的DataFrame格式
df = pd.DataFrame(boston.data, columns=boston.feature_names)
df['MEDV'] = boston.target
# 查看前5行数据
df.head()
```
这将得到一个Pandas DataFrame,其中包含波士顿房价数据集的所有数据。您可以使用这个DataFrame来进一步分析和处理数据。
阅读全文
相关推荐















