import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import LassoCV from sklearn.model_selection import train_test_split # 加载数据集 abalone = fetch_openml(name='abalone', version=1, as_frame=True) # 获取特征和标签 X = abalone.data y = abalone.target # 对性别特征进行独热编码 gender_encoder = OneHotEncoder(sparse=False) gender_encoded = gender_encoder.fit_transform(X[['Sex']]) # 特征缩放 scaler = StandardScaler() X_scaled = scaler.fit_transform(X.drop('Sex', axis=1)) # 合并编码后的性别特征和其他特征 X_processed = np.hstack((gender_encoded, X_scaled)) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_processed, y, test_size=0.2, random_state=42) # 初始化Lasso回归模型 lasso = LassoCV(alphas=[1e-4], random_state=42) # 随机梯度下降算法迭代次数和损失函数值 n_iterations = 200 losses = [] for iteration in range(n_iterations): # 随机选择一个样本 random_index = np.random.randint(len(X_train)) X_sample = X_train[random_index].reshape(1, -1) y_sample = y_train[random_index].reshape(1, -1) # 计算目标函数值与最优函数值之差 lasso.fit(X_sample, y_sample) loss = np.abs(lasso.coef_ - lasso.coef_).sum() losses.append(loss) # 绘制迭代效率图 plt.plot(range(n_iterations), losses) plt.xlabel('Iteration') plt.ylabel('Difference from Optimal Loss') plt.title('Stochastic Gradient Descent Convergence') plt.show()上述代码报错,请修改
时间: 2023-11-27 19:49:15 浏览: 117
这段代码中的问题是在计算损失函数值时,使用了同一个参数 lasso.coef_ 两次,应该将第二次的 lasso.coef_ 改为 lasso.coef_path_[-1]。修改后的代码如下:
```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear_model import LassoCV
from sklearn.model_selection import train_test_split
# 加载数据集
abalone = fetch_openml(name='abalone', version=1, as_frame=True)
# 获取特征和标签
X = abalone.data
y = abalone.target
# 对性别特征进行独热编码
gender_encoder = OneHotEncoder(sparse=False)
gender_encoded = gender_encoder.fit_transform(X[['Sex']])
# 特征缩放
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X.drop('Sex', axis=1))
# 合并编码后的性别特征和其他特征
X_processed = np.hstack((gender_encoded, X_scaled))
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_processed, y, test_size=0.2, random_state=42)
# 初始化Lasso回归模型
lasso = LassoCV(alphas=[1e-4], random_state=42)
# 随机梯度下降算法迭代次数和损失函数值
n_iterations = 200
losses = []
for iteration in range(n_iterations):
# 随机选择一个样本
random_index = np.random.randint(len(X_train))
X_sample = X_train[random_index].reshape(1, -1)
y_sample = y_train[random_index].reshape(1, -1)
# 计算目标函数值与最优函数值之差
lasso.fit(X_sample, y_sample)
loss = np.abs(lasso.coef_ - lasso.coef_path_[-1]).sum()
losses.append(loss)
# 绘制迭代效率图
plt.plot(range(n_iterations), losses)
plt.xlabel('Iteration')
plt.ylabel('Difference from Optimal Loss')
plt.title('Stochastic Gradient Descent Convergence')
plt.show()
```
阅读全文