线性插值,克里金插值,最近和以及其他机器学习模型插值代码邻插值,方法的代码
时间: 2024-05-14 19:14:58 浏览: 89
深度学习几种上采样方法代码,最近邻插值,双线性插值,pixelshuffle,unpool,逆卷积等示例代码
线性插值:
```python
import numpy as np
def linear_interpolation(x, y, x_new):
y_new = np.interp(x_new, x, y)
return y_new
```
克里金插值:
```python
from pykrige import OrdinaryKriging
def kriging_interpolation(x, y, z, x_new, y_new, variogram_model='linear'):
OK = OrdinaryKriging(x, y, z, variogram_model=variogram_model, verbose=False, enable_plotting=False)
z_new, error = OK.execute(style='points', xpoints=x_new, ypoints=y_new)
return z_new
```
最近邻插值:
```python
from scipy.interpolate import NearestNDInterpolator
def nearest_neighbor_interpolation(x, y, z, x_new, y_new):
points = np.column_stack((x, y))
interp = NearestNDInterpolator(points, z)
z_new = interp(x_new, y_new)
return z_new
```
其他机器学习模型插值:
```python
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression
from sklearn.neural_network import MLPRegressor
from sklearn.svm import SVR
def ml_interpolation(x, y, z, x_new, y_new, model='knn', **kwargs):
if model == 'knn':
regressor = KNeighborsRegressor(**kwargs)
elif model == 'linear':
regressor = LinearRegression(**kwargs)
elif model == 'mlp':
regressor = MLPRegressor(**kwargs)
elif model == 'svm':
regressor = SVR(**kwargs)
else:
raise ValueError('Invalid model name')
regressor.fit(np.column_stack((x, y)), z)
z_new = regressor.predict(np.column_stack((x_new, y_new)))
return z_new
```
其中,`**kwargs` 可以传递特定机器学习模型的参数。例如,对于 KNN 模型,可以传递 `n_neighbors` 参数来指定邻居数量。
阅读全文