import seaborn as sns import os import matplotlib.pyplot as plt # additional packages import sys sys.path.append(os.path.join('..', '..', 'Utilities')) try: # Import formatting commands if directory "Utilities" is available from ISP_mystyle import showData except ImportError: # Ensure correct performance otherwise def showData(*options): plt.show() return # additional packages import sys sys.path.append(os.path.join('..', '..', 'Utilities')) import ISP_mystyle sns.set(style="ticks") if __name__ == '__main__': # Load the example dataset for Anscombe's quartet df = sns.load_dataset("anscombe") # Show the results of a linear regression within each dataset sns.lmplot(x="x", y="y", col="dataset", hue="dataset", data=df, col_wrap=2, ci=None, palette="muted", size=4, scatter_kws={"s": 50, "alpha": 1}) outFile = 'Anscombes_quartet.png' showData(outFile)代码解释
时间: 2024-04-27 22:24:35 浏览: 95
这段代码使用了 Seaborn 库来绘制 Anscombe's quartet 数据集中的四个子集的线性回归结果。具体来说,代码使用了 lmplot 函数来绘制每个子集的散点图和回归线,并使用 col 和 col_wrap 参数将图像排列成两列。代码还使用了 ISP_mystyle 模块中的 showData 函数来保存图像并显示。最终,代码会将绘制好的图像保存到文件 "Anscombes_quartet.png" 中。
相关问题
import seaborn as sns import matplotlib.pyplot as plt
import seaborn as sns和import matplotlib.pyplot as plt都是Python中用于可视化的库。其中,seaborn是基于matplotlib的库,提供更加美观的图形界面和更加方便的绘图函数。而matplotlib.pyplot则是matplotlib库中用于绘制各种类型的图形的子库,常用于绘制线性图、散点图、柱状图等。使用这两个库可以方便地对数据进行可视化分析,从而更好地展示数据和发现数据之间的规律。
import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as sns
这是一段Python代码,它导入了四个库:pandas、numpy、matplotlib.pyplot和seaborn。这些库都是用于数据分析和可视化的常用库。其中,pandas用于数据处理和分析,numpy用于科学计算,matplotlib.pyplot用于绘制图表,seaborn用于数据可视化。如果你想使用这些库,需要先安装它们。你可以使用pip命令来安装它们,例如:
```shell
pip install pandas numpy matplotlib seaborn
```
安装完成后,你就可以在Python代码中使用它们了。
阅读全文