我要用googlenet和tensorflow和keras来识别岩石图像的种类的代码,有七类岩石图像,每类岩石图像有几百张照片,然后还要对这七类图像制作数据集标签的代码
时间: 2023-05-27 20:06:35 浏览: 75
以下是使用GoogLeNet和TensorFlow和Keras进行岩石图像分类的代码示例:
导入需要的库和模块:
```
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import Adam
import numpy as np
import os
```
设置训练和测试数据集的路径和其他参数:
```
train_dir = 'path/to/train/directory'
test_dir = 'path/to/test/directory'
img_width, img_height = 224, 224
batch_size = 32
epochs = 20
```
定义模型:
```
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(img_width, img_height, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(256, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))
```
编译模型:
```
model.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=0.0001, decay=1e-6),
metrics=['accuracy'])
```
使用ImageDataGenerator生成数据:
```
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
```
训练模型:
```
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // batch_size,
epochs=epochs,
validation_data=test_generator,
validation_steps=test_generator.samples // batch_size)
```
制作数据集标签的代码示例:
```
class_names = sorted(os.listdir(train_dir))
class_labels = {class_name: i for i, class_name in enumerate(class_names)}
# Save class labels to a file
with open('class_labels.txt', 'w') as file:
for class_name, class_label in class_labels.items():
file.write(f'{class_name}: {class_label}\n')
```
然后,您可以使用训练好的模型来预测新的岩石图像的种类。
阅读全文