我需要一段python代码,是在一维cnn中添加灰狼优化算法
时间: 2024-05-15 14:18:51 浏览: 96
好的,我可以帮您解答这个问题。以下是关于一维CNN中添加灰狼优化算法的Python代码示例:
```python
import numpy as np
import tensorflow as tf
# 定义一维CNN模型
def oneD_CNN(x):
conv1 = tf.layers.conv1d(x, filters=32, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
conv2 = tf.layers.conv1d(conv1, filters=64, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
pool1 = tf.layers.max_pooling1d(conv2, pool_size=2, strides=2, padding='same')
conv3 = tf.layers.conv1d(pool1, filters=128, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
conv4 = tf.layers.conv1d(conv3, filters=256, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu)
pool2 = tf.layers.max_pooling1d(conv4, pool_size=2, strides=2, padding='same')
return pool2
# 灰狼优化算法实现
def GWO_optimizer(func, bounds, search_agents, max_iter):
dim = len(bounds)
alpha_pos = np.zeros(dim)
beta_pos = np.zeros(dim)
delta_pos = np.zeros(dim)
alpha_score = float("inf")
beta_score = float("inf")
delta_score = float("inf")
positions = np.zeros((search_agents, dim))
for i in range(dim):
positions[:, i] = np.random.uniform(bounds[i][0], bounds[i][1], search_agents)
for k in range(max_iter):
a = 2 - k * (2 / max_iter) # 更新a值
for i in range(search_agents):
for j in range(dim):
r1 = np.random.random()
r2 = np.random.random()
A1 = 2 * a * r1 - a
C1 = 2 * r2
D_alpha = abs(C1 * alpha_pos[j] - positions[i, j])
X1 = alpha_pos[j] - A1 * D_alpha
r1 = np.random.random()
r2 = np.random.random()
A2 = 2 * a * r1 - a
C2 = 2 * r2
D_beta = abs(C2 * beta_pos[j] - positions[i, j])
X2 = beta_pos[j] - A2 * D_beta
r1 = np.random.random()
r2 = np.random.random()
A3 = 2 * a * r1 - a
C3 = 2 * r2
D_delta = abs(C3 * delta_pos[j] - positions[i, j])
X3 = delta_pos[j] - A3 * D_delta
positions[i, j] = (X1 + X2 + X3) / 3
fitness = func(positions[i, :])
if fitness < alpha_score:
alpha_score = fitness
alpha_pos = positions[i, :]
if fitness > alpha_score and fitness < beta_score:
beta_score = fitness
beta_pos = positions[i, :]
if fitness > alpha_score and fitness > beta_score and fitness < delta_score:
delta_score = fitness
delta_pos = positions[i, :]
return alpha_pos
# 定义要最小化的目标函数
def target_func(x):
# 将x转换为卷积核尺度
kernel_size = int(np.round(x[0] * 7) + 3)
# 构建一维CNN模型
inputs = tf.placeholder(tf.float32, [None, 100, 1])
output = oneD_CNN(inputs)
# 构建分类层
flatten = tf.layers.flatten(output)
dense = tf.layers.dense(flatten, 256, activation=tf.nn.relu)
dropout = tf.layers.dropout(dense, rate=0.5)
logits = tf.layers.dense(dropout, 10)
# 定义损失函数和优化器
labels = tf.placeholder(tf.float32, [None, 10])
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(loss)
# 训练模型并返回损失函数值
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(100):
batch_xs, batch_ys = next_batch(128)
sess.run(train_op, feed_dict={inputs: batch_xs, labels: batch_ys})
cost = sess.run(loss, feed_dict={inputs: test_x, labels: test_y})
return cost
# 设置搜索范围和算法参数
bounds = [(0, 1)]
search_agents = 16
max_iter = 50
# 运行灰狼优化算法
best = GWO_optimizer(target_func, bounds, search_agents, max_iter)
print("Best result: ", best)
```
注:在这个示例中,我们使用灰狼优化算法来寻找最优的一维卷积核尺度,以最小化测试集上的交叉熵损失函数值。我们假设训练数据和测试数据已经被加载到变量train\_x和train\_y中,并且模型已被定义和编译。函数next\_batch用于生成batch数据。
阅读全文