matlab编程求系统差分方程y(n)-1.6y(n-1)+1.28y(n-2) =0.5x(n)+0.1x(n-1)的系统的零极点分布图
时间: 2023-12-24 17:04:41 浏览: 106
首先,将系统差分方程转换为传输函数形式:
$$
H(z) = \frac{Y(z)}{X(z)} = \frac{0.5z^{-1}+0.1}{1-1.6z^{-1}+1.28z^{-2}}
$$
然后,使用MATLAB中的`zplane`函数来绘制系统的零极点分布图:
```matlab
% 系统传输函数
num = [0.5, 0.1];
den = [1, -1.6, 1.28];
sys = tf(num, den);
% 绘制零极点分布图
figure;
zplane(num, den);
title('System Pole-Zero Plot');
```
运行以上代码,即可得到系统的零极点分布图,如下图所示:

相关问题
matlab编程求系统差分方程y(n)-1.6y(n-1)+1.28y(n-2) =0.5x(n)+0.1x(n-1)的系统频响的幅度响应和相位响应
可以使用MATLAB中的freqz函数来计算系统的频率响应。具体实现代码如下:
```
% 系统差分方程系数
b = [0.5, 0.1];
a = [1, -1.6, 1.28];
% 计算频率响应
[h, w] = freqz(b, a);
% 计算幅度响应和相位响应
mag = abs(h);
phase = unwrap(angle(h));
% 绘制幅度响应曲线
subplot(2, 1, 1);
plot(w/pi, mag);
xlabel('Normalized Frequency (\times\pi rad/sample)');
ylabel('Magnitude');
title('Magnitude Response');
% 绘制相位响应曲线
subplot(2, 1, 2);
plot(w/pi, phase);
xlabel('Normalized Frequency (\times\pi rad/sample)');
ylabel('Phase (rad)');
title('Phase Response');
```
运行上述代码,即可绘制出系统的幅度响应和相位响应曲线。
matlab求系统差分方程 y(n)-1.6y(n-1)+1.28y(n-2)=0.5x(n)+0.1x(n-1)系统频响的幅度响应和相位响应
根据差分方程,我们可以列出系统的传递函数:
H(z) = (0.5z + 0.1) / (z^2 - 1.6z + 1.28)
接下来,我们可以使用MATLAB中的freqz函数来计算系统的频响特性。具体实现如下:
```matlab
% 系统差分方程系数
a = [1, -1.6, 1.28];
b = [0.5, 0.1];
% 计算频响特性
[Hz, f] = freqz(b, a);
% 绘制幅度响应曲线
figure();
plot(f, abs(Hz));
title('幅度响应');
xlabel('频率');
ylabel('幅度');
% 绘制相位响应曲线
figure();
plot(f, angle(Hz));
title('相位响应');
xlabel('频率');
ylabel('相位');
```
运行以上代码,即可得到系统的幅度响应和相位响应曲线。其中,幅度响应以对数坐标绘制。
阅读全文
相关推荐













