STM32智能小车红外避障+红外跟随+红外循迹+超声波避障基于库函数程序按键配置c++

时间: 2023-08-16 07:08:31 浏览: 383
### 回答1: 以下是基于STM32库函数的智能小车程序,实现了红外避障、红外跟随、红外循迹和超声波避障功能,并且支持按键配置。 ```c++ #include "stm32f10x.h" #include "delay.h" #include "lcd.h" #include "usart.h" #include "key.h" #include "ir.h" #include "ultrasonic.h" #include "motor.h" void System_Init(void); void Key_Configuration(void); int main(void) { System_Init(); Key_Configuration(); LCD_Init(); USART1_Init(9600); IR_Init(); Ultrasonic_Init(); Motor_Init(); while (1) { if (Key_Scan(KEY1)) { while (Key_Scan(KEY1)); IR_Avoid(); } if (Key_Scan(KEY2)) { while (Key_Scan(KEY2)); IR_Follow(); } if (Key_Scan(KEY3)) { while (Key_Scan(KEY3)); IR_Track(); } if (Key_Scan(KEY4)) { while (Key_Scan(KEY4)); Ultrasonic_Avoid(); } } } void System_Init(void) { RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA | RCC_AHBPeriph_GPIOB | RCC_AHBPeriph_GPIOC | RCC_AHBPeriph_GPIOD | RCC_AHBPeriph_GPIOE, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_AFIO | RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE, ENABLE); SysTick_Config(SystemCoreClock / 1000); } void Key_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOB, &GPIO_InitStructure); } ``` 其中,`System_Init()`函数用于初始化系统时钟和各个IO口,`Key_Configuration()`函数用于配置按键GPIO口为上拉输入模式。 在`main()`函数中,通过扫描按键状态来选择不同的功能。当按下`KEY1`时,调用`IR_Avoid()`函数实现红外避障功能;当按下`KEY2`时,调用`IR_Follow()`函数实现红外跟随功能;当按下`KEY3`时,调用`IR_Track()`函数实现红外循迹功能;当按下`KEY4`时,调用`Ultrasonic_Avoid()`函数实现超声波避障功能。 以上只是代码的框架,具体的红外避障、红外跟随、红外循迹和超声波避障功能实现可以参考其他相关资料。 ### 回答2: STM32智能小车是一款具备红外避障、红外跟随、红外循迹和超声波避障功能的智能小车。通过使用库函数程序和按键配置c,可以实现对这些功能的控制。以下是具体配置方法: 首先,通过使用库函数,我们可以方便地使用MCU的GPIO接口、定时器等硬件资源,来控制小车的红外传感器和超声波传感器。 针对红外避障功能,我们可以使用库函数对红外传感器进行初始化,使其能够正常工作。随后,通过编写中断服务函数,当红外传感器检测到障碍物时,可以触发相应的动作,例如停车或改变方向。同时,我们还可以利用库函数的定时器功能,实现红外传感器的周期性检测。 针对红外跟随功能,我们可以使用库函数对红外传感器进行初始化,并编写中断服务函数来实现小车根据检测到的红外信号来调整方向。通过按键配置c,我们可以在运行过程中灵活切换红外跟随功能的启用和禁用。 针对红外循迹功能,我们可以使用库函数对红外传感器进行初始化,并编写中断服务函数来实现小车跟随指定路径。通过按键配置c,我们可以在运行过程中切换循迹路径,例如实现左转、右转等操作。 针对超声波避障功能,我们可以使用库函数初始化超声波传感器,并编写中断服务函数来实现小车对前方障碍物的检测。当检测到障碍物时,我们可以触发相应的动作,例如停车或改变方向。同样,按键配置c可以用来在运行过程中启用或禁用超声波避障功能。 总的来说,通过库函数程序的配置和按键c的设定,STM32智能小车的红外避障、红外跟随、红外循迹和超声波避障功能可以得到灵活的控制和调整,使智能小车能够更好地应对不同的运行环境和任务需求。 ### 回答3: STM32智能小车是一种基于STM32单片机的智能控制系统,具备红外避障、红外跟随、红外循迹和超声波避障等功能。这些功能是通过程序控制和配置实现的,而使用库函数可以简化开发过程。 红外避障是利用红外传感器来检测前方障碍物,并通过控制电机的转向来避开障碍物。库函数可以提供红外传感器接口函数和相关算法,使得开发者只需要通过简单的配置即可实现红外避障功能。 红外跟随是利用红外传感器来检测前方物体的位置,并通过电机的转向控制来始终跟随物体。库函数可以提供红外传感器接口函数和跟随算法,使得开发者只需要按照需求进行配置,即可实现红外跟随功能。 红外循迹是利用红外传感器来检测路径上的黑线,并通过电机的转向控制来沿着黑线行驶。库函数可以提供红外传感器接口函数和循迹算法,开发者只需要设置黑线的阈值和电机的转向规则,即可实现红外循迹功能。 超声波避障是利用超声波传感器来检测前方障碍物的距离,并通过电机的转向控制来避开障碍物。库函数可以提供超声波传感器接口函数和避障算法,使得开发者只需要简单的配置超声波传感器的参数和电机的转向规则,即可实现超声波避障功能。 按键配置是指通过按键来控制小车的运动。库函数可以提供按键扫描函数和相应的中断处理函数,开发者只需要配置按键的引脚和中断触发条件,即可实现按键配置功能。 通过库函数的支持,开发者可以更加轻松地实现STM32智能小车的红外避障、红外跟随、红外循迹和超声波避障功能,并可以通过按键配置来灵活地控制小车的运动。同时,库函数的使用也可以大大缩短开发周期,提高开发效率。
阅读全文

相关推荐

最新推荐

recommend-type

STM32实现智能小车电磁循迹

【STM32实现智能小车电磁循迹】项目旨在利用STM32单片机和电磁感应原理,构建一个能够沿着预设线路自主行驶的智能小车。该项目涉及到多个技术环节,包括赛道检测原理、电感线圈设计、信号处理电路、传感模块功能实现...
recommend-type

基于STM32的循迹往返小车设计

STM32F103芯片为核心的智能循迹小车设计是一种常见的电子竞赛项目,它集成了微控制器技术、传感器技术、电机控制以及显示技术等多种领域知识。STM32系列是意法半导体(STMicroelectronics)推出的基于ARM Cortex-M...
recommend-type

【单片机项目】制作一辆基于STM32的智能小车——概述

本文以"【单片机项目】制作一辆基于STM32的智能小车——概述"为标题,介绍了作者从购买STM32F429开发板到逐步掌握相关技术的过程,展现了学习单片机开发的挑战与乐趣。 STM32是一款广泛应用于各种嵌入式系统中的微...
recommend-type

基于arduino红外线传感器循迹xiaoche

在本项目中,我们探讨了基于Arduino的红外线传感器循迹小车的设计与实现。这款小车主要用于自动化路径追踪,适合于电子信息工程专业的实践教学和创新项目。它由四个主要部分构成:Arduino模块、传感器模块、电机驱动...
recommend-type

51单片机红外四路循迹小车程序

【51单片机红外四路循迹小车程序】是一种基于51系列单片机控制的智能小车,它利用红外传感器来检测路径并自动调整行驶方向。在这个项目中,小车通过四个独立的红外传感器(每个车轮前方一个)来识别赛道线条,从而...
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。