pso算法对卡尔曼滤波的Q和R优化的代码具体过程
时间: 2024-02-29 19:56:08 浏览: 182
下面是一个简单的示例代码,展示了如何使用粒子群优化算法来优化卡尔曼滤波器的Q和R参数:
```python
import numpy as np
from scipy.stats import multivariate_normal
# 定义粒子群算法的参数
num_particles = 20
num_iterations = 50
w = 0.729 # 惯性权重
c1 = 1.49445 # 个体学习因子
c2 = 1.49445 # 全局学习因子
# 定义卡尔曼滤波器的初始状态
x0 = np.array([0, 0])
P0 = np.eye(2)
A = np.eye(2)
H = np.array([[1, 0], [0, 1]])
Q = np.eye(2)
R = np.eye(2)
# 定义适应度函数,即卡尔曼滤波器的误差
def fitness_function(Q, R):
x = x0
P = P0
y_meas = np.array([[1, 0], [0, 1]])
error = 0
for i in range(len(y_meas)):
# 预测
x = A @ x
P = A @ P @ A.T + Q
# 更新
S = H @ P @ H.T + R
K = P @ H.T @ np.linalg.inv(S)
x = x + K @ (y_meas[i] - H @ x)
P = (np.eye(2) - K @ H) @ P
# 计算误差
error += multivariate_normal.logpdf(y_meas[i], mean=H @ x, cov=S)
return -error
# 初始化粒子群
particles = []
velocities = []
best_positions = []
best_fitnesses = []
global_best_position = None
global_best_fitness = float('-inf')
for i in range(num_particles):
q = np.random.rand(2, 2)
r = np.random.rand(2, 2)
particles.append((q, r))
velocities.append((np.random.rand(2, 2), np.random.rand(2, 2)))
fitness = fitness_function(q, r)
best_positions.append((q, r))
best_fitnesses.append(fitness)
if fitness > global_best_fitness:
global_best_fitness = fitness
global_best_position = (q, r)
# 迭代粒子群
for t in range(num_iterations):
for i in range(num_particles):
# 更新速度
vel_q = w * velocities[i][0] + c1 * np.random.rand(2, 2) * (best_positions[i][0] - particles[i][0]) + c2 * np.random.rand(2, 2) * (global_best_position[0] - particles[i][0])
vel_r = w * velocities[i][1] + c1 * np.random.rand(2, 2) * (best_positions[i][1] - particles[i][1]) + c2 * np.random.rand(2, 2) * (global_best_position[1] - particles[i][1])
velocities[i] = (vel_q, vel_r)
# 更新位置
particles[i] = (particles[i][0] + vel_q, particles[i][1] + vel_r)
# 更新个体最优位置和全局最优位置
fitness = fitness_function(particles[i][0], particles[i][1])
if fitness > best_fitnesses[i]:
best_positions[i] = particles[i]
best_fitnesses[i] = fitness
if fitness > global_best_fitness:
global_best_fitness = fitness
global_best_position = particles[i]
print('Iteration %d: fitness = %f' % (t, global_best_fitness))
# 输出最终的Q和R参数
print('Optimal Q:', global_best_position[0])
print('Optimal R:', global_best_position[1])
```
这个示例代码中,我们使用粒子群算法来优化卡尔曼滤波器的Q和R参数。首先,我们定义了卡尔曼滤波器的初始状态和适应度函数。然后,我们初始化了粒子群的状态,并迭代更新粒子群的速度和位置,直到达到预设的迭代次数或误差满足要求。最终,我们输出了最优的Q和R参数。
阅读全文