通过PWM控制LED灯光的亮度,通过按键控制实现三档亮度的切换。 实现色温的切换,通过PWM调节白光和黄光的比例。 用stm32芯片

时间: 2023-06-26 12:04:14 浏览: 330
好的,这个问题涉及到硬件和软件两个方面,我会尽可能详细地解答。 首先,需要准备的硬件: 1. STM32开发板 2. LED灯 3. 按键 4. 电阻 5. 杜邦线 接下来,我们开始编写程序。 首先,需要初始化GPIO口作为PWM输出和按键输入。以下是初始化代码: ```c // 初始化LED灯的PWM输出 GPIO_InitTypeDef GPIO_InitStruct; TIM_OC_InitTypeDef sConfigOC; TIM_HandleTypeDef htim; htim.Instance = TIM1; htim.Init.Prescaler = 0; htim.Init.CounterMode = TIM_COUNTERMODE_UP; htim.Init.Period = 1000; htim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; HAL_TIM_PWM_Init(&htim); sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&htim, &sConfigOC, TIM_CHANNEL_1); GPIO_InitStruct.Pin = LED_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF1_TIM1; HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct); // 初始化按键输入 GPIO_InitStruct.Pin = KEY_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(KEY_GPIO_Port, &GPIO_InitStruct); ``` 接下来,需要编写控制PWM输出的函数。我们可以将它封装成一个函数,方便后面的调用。以下是函数代码: ```c void setPWM(uint16_t dutyCycle) { TIM_OC_InitTypeDef sConfigOC; uint32_t pulse = (1000 * dutyCycle) / 100; sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = pulse; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&htim, &sConfigOC, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim, TIM_CHANNEL_1); } ``` 接下来,需要编写控制LED灯亮度的代码。我们可以将三档亮度分别设置为33%、66%和100%。以下是代码: ```c if (HAL_GPIO_ReadPin(KEY_GPIO_Port, KEY_Pin) == GPIO_PIN_RESET) { if (dutyCycle == 100) { dutyCycle = 33; } else if (dutyCycle == 33) { dutyCycle = 66; } else if (dutyCycle == 66) { dutyCycle = 100; } setPWM(dutyCycle); } ``` 最后,我们需要实现色温的切换。我们可以使用两个PWM输出分别控制白光和黄光的亮度,然后通过改变两个PWM输出的占空比比例来实现色温的调节。以下是代码: ```c uint16_t whiteDutyCycle = 50; uint16_t yellowDutyCycle = 50; while (1) { if (HAL_GPIO_ReadPin(KEY_GPIO_Port, KEY_Pin) == GPIO_PIN_RESET) { if (whiteDutyCycle == 50) { whiteDutyCycle = 33; yellowDutyCycle = 66; } else if (whiteDutyCycle == 33) { whiteDutyCycle = 50; yellowDutyCycle = 50; } else if (whiteDutyCycle == 66) { whiteDutyCycle = 50; yellowDutyCycle = 33; } setPWM(whiteDutyCycle); setPWM2(yellowDutyCycle); } } ``` 完整代码如下: ```c #include "main.h" TIM_HandleTypeDef htim; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM1_Init(void); void setPWM(uint16_t dutyCycle) { TIM_OC_InitTypeDef sConfigOC; uint32_t pulse = (1000 * dutyCycle) / 100; sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = pulse; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&htim, &sConfigOC, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim, TIM_CHANNEL_1); } void setPWM2(uint16_t dutyCycle) { TIM_OC_InitTypeDef sConfigOC; uint32_t pulse = (1000 * dutyCycle) / 100; sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = pulse; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&htim, &sConfigOC, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim, TIM_CHANNEL_2); } int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_TIM1_Init(); uint16_t dutyCycle = 100; uint16_t whiteDutyCycle = 50; uint16_t yellowDutyCycle = 50; while (1) { if (HAL_GPIO_ReadPin(KEY_GPIO_Port, KEY_Pin) == GPIO_PIN_RESET) { if (dutyCycle == 100) { dutyCycle = 33; } else if (dutyCycle == 33) { dutyCycle = 66; } else if (dutyCycle == 66) { dutyCycle = 100; } setPWM(dutyCycle); } if (HAL_GPIO_ReadPin(KEY_GPIO_Port, KEY_Pin) == GPIO_PIN_RESET) { if (whiteDutyCycle == 50) { whiteDutyCycle = 33; yellowDutyCycle = 66; } else if (whiteDutyCycle == 33) { whiteDutyCycle = 50; yellowDutyCycle = 50; } else if (whiteDutyCycle == 66) { whiteDutyCycle = 50; yellowDutyCycle = 33; } setPWM(whiteDutyCycle); setPWM2(yellowDutyCycle); } } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } static void MX_TIM1_Init(void) { TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; htim.Instance = TIM1; htim.Init.Prescaler = 0; htim.Init.CounterMode = TIM_COUNTERMODE_UP; htim.Init.Period = 1000; htim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; HAL_TIM_PWM_Init(&htim); sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&htim, &sConfigOC, TIM_CHANNEL_1); HAL_TIM_PWM_ConfigChannel(&htim, &sConfigOC, TIM_CHANNEL_2); sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(&htim, &sMasterConfig); } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOA_CLK_ENABLE() ; __HAL_RCC_GPIOB_CLK_ENABLE() ; HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET); GPIO_InitStruct.Pin = LED_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF1_TIM1; HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct); GPIO_InitStruct.Pin = KEY_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(KEY_GPIO_Port, &GPIO_InitStruct); } ``` 希望这个回答能够帮到你。
阅读全文

相关推荐

最新推荐

recommend-type

51单片机脉冲宽度调制(PWM)控制LED灯亮度

虽然51单片机本身并不内置PWM(脉冲宽度调制)接口,但通过软件编程可以模拟实现PWM功能,这正是我们所讨论的51单片机控制LED灯亮度的原理。PWM技术在调节电源输出、驱动电机以及如本文所述的控制LED亮度等方面都有...
recommend-type

(PWM)51单片机脉冲宽度调制控制LED灯亮度

标题中的 "(PWM)51单片机脉冲宽度调制控制LED灯亮度" 提示我们,这个话题涉及51系列单片机使用脉冲宽度调制(PWM)技术来调节LED灯的亮度。51单片机本身并不直接提供PWM接口,因此需要通过软件模拟来实现这一功能。 ...
recommend-type

LED亮度线性变化难搞?PWM占空比帮你忙

PWM(脉冲宽度调制)技术在此起到了关键作用,它通过调整占空比来实现亮度的平滑调节。占空比,简单来说,是指在一个周期内,信号高电平状态持续的时间与整个周期的比值,它直接影响到LED的平均亮度。 在LED驱动中...
recommend-type

51单片机中用PWM控制LED亮度调节

总结起来,51单片机通过PWM控制LED亮度的核心在于调整占空比,利用定时器设置适当的频率和中断服务程序切换输出电平。程序中的关键步骤包括配置定时器工作模式、设置初值、启动定时器、打开中断以及在中断服务程序中...
recommend-type

基于LLC谐振变换器和准谐振PWM恒流控制的LED驱动电源设计

《基于LLC谐振变换器和准谐振PWM恒流控制的LED驱动电源设计》 LED驱动电源在现代照明领域中扮演着至关重要的角色,它为LED提供稳定的工作电压和电流,确保LED光源的亮度、寿命及能效。相较于传统的照明设备,LED...
recommend-type

Python中快速友好的MessagePack序列化库msgspec

资源摘要信息:"msgspec是一个针对Python语言的高效且用户友好的MessagePack序列化库。MessagePack是一种快速的二进制序列化格式,它旨在将结构化数据序列化成二进制格式,这样可以比JSON等文本格式更快且更小。msgspec库充分利用了Python的类型提示(type hints),它支持直接从Python类定义中生成序列化和反序列化的模式。对于开发者来说,这意味着使用msgspec时,可以减少手动编码序列化逻辑的工作量,同时保持代码的清晰和易于维护。 msgspec支持Python 3.8及以上版本,能够处理Python原生类型(如int、float、str和bool)以及更复杂的数据结构,如字典、列表、元组和用户定义的类。它还能处理可选字段和默认值,这在很多场景中都非常有用,尤其是当消息格式可能会随着时间发生变化时。 在msgspec中,开发者可以通过定义类来描述数据结构,并通过类继承自`msgspec.Struct`来实现。这样,类的属性就可以直接映射到消息的字段。在序列化时,对象会被转换为MessagePack格式的字节序列;在反序列化时,字节序列可以被转换回原始对象。除了基本的序列化和反序列化,msgspec还支持运行时消息验证,即可以在反序列化时检查消息是否符合预定义的模式。 msgspec的另一个重要特性是它能够处理空集合。例如,上面的例子中`User`类有一个名为`groups`的属性,它的默认值是一个空列表。这种能力意味着开发者不需要为集合中的每个字段编写额外的逻辑,以处理集合为空的情况。 msgspec的使用非常简单直观。例如,创建一个`User`对象并序列化它的代码片段显示了如何定义一个用户类,实例化该类,并将实例序列化为MessagePack格式。这种简洁性是msgspec库的一个主要优势,它减少了代码的复杂性,同时提供了高性能的序列化能力。 msgspec的设计哲学强调了性能和易用性的平衡。它利用了Python的类型提示来简化模式定义和验证的复杂性,同时提供了优化的内部实现来确保快速的序列化和反序列化过程。这种设计使得msgspec非常适合于那些需要高效、类型安全的消息处理的场景,比如网络通信、数据存储以及服务之间的轻量级消息传递。 总的来说,msgspec为Python开发者提供了一个强大的工具集,用于处理高性能的序列化和反序列化任务,特别是当涉及到复杂的对象和结构时。通过利用类型提示和用户定义的模式,msgspec能够简化代码并提高开发效率,同时通过运行时验证确保了数据的正确性。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32 HAL库函数手册精读:最佳实践与案例分析

![STM32 HAL库函数手册精读:最佳实践与案例分析](https://khuenguyencreator.com/wp-content/uploads/2020/07/bai11.jpg) 参考资源链接:[STM32CubeMX与STM32HAL库开发者指南](https://wenku.csdn.net/doc/6401ab9dcce7214c316e8df8?spm=1055.2635.3001.10343) # 1. STM32与HAL库概述 ## 1.1 STM32与HAL库的初识 STM32是一系列广泛使用的ARM Cortex-M微控制器,以其高性能、低功耗、丰富的外设接
recommend-type

如何利用FineReport提供的预览模式来优化报表设计,并确保最终用户获得最佳的交互体验?

针对FineReport预览模式的应用,这本《2020 FCRA报表工程师考试题库与答案详解》详细解读了不同预览模式的使用方法和场景,对于优化报表设计尤为关键。首先,设计报表时,建议利用FineReport的分页预览模式来检查报表的布局和排版是否准确,因为分页预览可以模拟报表在打印时的页面效果。其次,通过填报预览模式,可以帮助开发者验证用户交互和数据收集的准确性,这对于填报类型报表尤为重要。数据分析预览模式则适合于数据可视化报表,可以在这个模式下调整数据展示效果和交互设计,确保数据的易读性和分析的准确性。表单预览模式则更多关注于表单的逻辑和用户体验,可以用于检查表单的流程是否合理,以及数据录入
recommend-type

大学生社团管理系统设计与实现

资源摘要信息:"基于ssm+vue的大学生社团管理系统.zip" 该系统是基于Java语言开发的,使用了ssm框架和vue前端框架,主要面向大学生社团进行管理和运营,具备了丰富的功能和良好的用户体验。 首先,ssm框架是Spring、SpringMVC和MyBatis三个框架的整合,其中Spring是一个全面的企业级框架,可以处理企业的业务逻辑,实现对象的依赖注入和事务管理。SpringMVC是基于Servlet API的MVC框架,可以分离视图和模型,简化Web开发。MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 SpringBoot是一种全新的构建和部署应用程序的方式,通过使用SpringBoot,可以简化Spring应用的初始搭建以及开发过程。它使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。 Vue.js是一个用于创建用户界面的渐进式JavaScript框架,它的核心库只关注视图层,易于上手,同时它的生态系统也十分丰富,提供了大量的工具和库。 系统主要功能包括社团信息管理、社团活动管理、社团成员管理、社团财务管理等。社团信息管理可以查看和编辑社团的基本信息,如社团名称、社团简介等;社团活动管理可以查看和编辑社团的活动信息,如活动时间、活动地点等;社团成员管理可以查看和编辑社团成员的信息,如成员姓名、成员角色等;社团财务管理可以查看和编辑社团的财务信息,如收入、支出等。 此外,该系统还可以通过微信小程序进行访问,微信小程序是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或者搜一下即可打开应用。同时,它也实现了应用“用完即走”的理念,用户不用关心是否安装太多应用的问题。应用将无处不在,随时可用,但又无需安装卸载。 总的来说,基于ssm+vue的大学生社团管理系统是一款功能丰富、操作简便、使用方便的社团管理工具,非常适合大学生社团的日常管理和运营。