大津阈值分割算法matlab
时间: 2023-09-02 21:08:39 浏览: 124
【图像语义分割】基于浣熊优化算法COA的Otsu(大津法)多阈值电表数字图像分割 电表数字识别【matlab代码】
以下是大津阈值分割算法的MATLAB代码:
```
function [bw, threshold] = otsu(im)
%OTSU performs Otsu's thresholding on a grayscale image
% [BW, THRESHOLD] = OTSU(IM) performs Otsu's thresholding on the
% grayscale image IM and returns the binary image BW and the
% threshold value THRESHOLD.
% Ensure input is a grayscale image
if size(im, 3) > 1
error('Input must be a grayscale image');
end
% Compute histogram
counts = imhist(im);
% Normalize histogram
p = counts / sum(counts);
% Compute cumulative sums
omega = cumsum(p);
mu = cumsum(p .* (1:length(p))');
% Compute global mean
mu_t = mu(end);
% Compute between-class variance
sigma_b_squared = (mu_t * omega - mu).^2 ./ (omega .* (1 - omega));
% Find maximum between-class variance
[threshold, ~] = max(sigma_b_squared);
% Convert threshold to index
threshold = threshold / numel(p);
% Binarize image using threshold
bw = imbinarize(im, threshold);
end
```
该函数的输入为一个灰度图像,输出为二值图像和阈值值(即otsu算法计算出的最佳阈值)。函数首先计算图像的直方图,然后将其归一化。接下来,该函数计算每个像素值的概率分布。然后,它计算每个像素值的累计和,并使用这些值计算全局平均值和类间方差。最后,该函数找到类间方差最大的阈值,并使用该阈值将图像二值化。
阅读全文