smote算法matlab代码
时间: 2023-08-03 19:05:26 浏览: 225
SMOTE.rar_SMOTE代码_SMOTE算法_matlab smote_smote MATLAB_过采样算法
5星 · 资源好评率100%
以下是使用MATLAB实现SMOTE算法的代码示例:
```matlab
function [X_resampled, y_resampled] = smote(X, y, k, minority_class, N)
% X: 特征矩阵
% y: 标签
% k: K近邻数
% minority_class: 少数类标签
% N: 合成新样本数量
X_minority = X(y == minority_class, :); % 获取少数类样本
num_minority = size(X_minority, 1); % 少数类样本数量
X_resampled = X;
y_resampled = y;
for i = 1:N
% 随机选择一个少数类样本
idx = randi(num_minority);
x = X_minority(idx, :);
% 找到该样本的K近邻
dists = pdist2(x, X);
[sorted_dists, sorted_idx] = sort(dists);
knn_idx = sorted_idx(2:k+1);
% 随机选择一个K近邻
knn_X = X(knn_idx, :);
knn_idx = knn_idx(randi(k));
knn_x = X(knn_idx, :);
% 在该样本与选定K近邻之间插值
lambda = rand;
new_x = x + lambda * (knn_x - x);
% 添加新样本
X_resampled = [X_resampled; new_x];
y_resampled = [y_resampled; minority_class];
end
end
```
使用示例:
```matlab
% 导入数据
data = readtable('data.csv');
X = data{:, 1:end-1};
y = data{:, end};
% 运行SMOTE算法
[X_resampled, y_resampled] = smote(X, y, 5, 1, 100);
% 训练模型
model = fitcsvm(X_resampled, y_resampled);
% 预测
y_pred = predict(model, X_test);
```
阅读全文