请解释Matlab代码 ode_system = @(t, y) [ (y(1) - y(2)) / R1 - S(t) * PN / Cin; (y(1) - y(2)) / R1 - (y(2) - 0) / R2 ];
时间: 2024-06-02 18:13:02 浏览: 97
这段Matlab代码定义了一个函数 `ode_system`,该函数接受两个输入参数 `t` 和 `y`,其中 `t` 代表时间,`y` 则代表一个包含两个元素的向量。
该函数的输出是一个包含两个元素的向量,其中第一个元素是 `(y(1) - y(2)) / R1 - S(t) * PN / Cin`,第二个元素是 `(y(1) - y(2)) / R1 - (y(2) - 0) / R2`。
这个函数的作用是定义一个常微分方程组,用于描述一个电路中两个电阻器之间的电压和电流关系。其中 `R1` 和 `R2` 分别代表两个电阻器的电阻值,`S(t)` 代表一个关于时间的函数,`PN` 和 `Cin` 则是常数。
相关问题
ERTBP matlab
### ERTBP Implementation in MATLAB
The Earth Rotating Three-Body Problem (ERTBP) involves simulating the motion of three celestial bodies where one body is significantly less massive than the other two. Below, an example of how to implement this problem using MATLAB focuses on solving differential equations that describe such systems.
To simulate the dynamics involved in ERTBP, numerical methods like Runge-Kutta are often employed due to their accuracy and efficiency over long integration times. Here’s a simplified version demonstrating basic setup:
```matlab
function dydt = ertbp_ode(t,y,mu)
% Define parameters for the system.
r1 = [mu; 0]; % Position vector of primary mass m1
r2 = [-1+mu; 0]; % Position vector of secondary mass m2
% Positions relative to each point mass
R1 = y(1:2)' - r1;
R2 = y(1:2)' - r2;
% Compute distances squared between test particle and masses
d1sq = sum(R1.^2);
d2sq = sum(R2.^2);
% Acceleration components towards both primaries
ax = -(1-mu)*(y(1)-r1(1))/d1sq^(3/2) - mu*(y(1)-r2(1))/d2sq^(3/2);
ay = -(1-mu)*y(2)/d1sq^(3/2) - mu*y(2)/d2sq^(3/2);
% Output derivatives as required by ODE solver
dydt = [y(3); y(4); ax; ay];
end
% Parameters setting up initial conditions & simulation time span
tspan = linspace(0, 50*pi, 1e4); % Time array spanning several orbits
init_pos = [0.987654; 0]; % Initial position close but not at L1 Lagrange Point
init_vel = [0; sqrt((1 + init_pos(1)))] ;% Velocity chosen so total energy matches circular orbit around smaller mass
options = odeset('RelTol',1e-9,'AbsTol',[1e-9 1e-9]);
% Solve the set of ordinary differential equations describing the movement
[t,Y] = ode45(@(t,y) ertbp_ode(t,y,0.01), tspan, [init_pos; init_vel], options);
% Plotting results
figure();
plot(Y(:,1), Y(:,2));
xlabel('X Position');
ylabel('Y Position');
title('Trajectory Under Influence Of Two Primary Masses In Circular Restricted Three Body System');
grid on;
axis equal;
```
This script defines `ertbp_ode` function which calculates accelerations experienced by infinitesimal third body under gravitational influence from two larger ones placed along X-axis separated unit distance apart with combined normalized mass μ=0.01 here representing Sun-Earth scenario approximately[^1].
For more advanced implementations or specific applications related to ERTBP within MATLAB environment, exploring toolboxes dedicated to astrodynamics might provide additional functionalities tailored specifically toward these kinds of problems.
阅读全文
相关推荐

















