三维的voronoi插件

时间: 2023-04-10 19:01:50 浏览: 63
我可以回答这个问题。三维的voronoi插件是一种用于计算三维空间中的voronoi图的工具,可以用于许多应用领域,如计算机图形学、地理信息系统等。常见的三维voronoi插件包括Qhull、CGAL等。
相关问题

python三维voronoi程序

好的,关于Python中的三维Voronoi程序,我可以给你一些指导。在Python中,我们可以使用一些库来实现三维Voronoi图的计算和可视化。其中比较常用的库包括: 1. Scipy: Scipy是一个Python科学计算库,其中包含了计算三维Voronoi图的函数"scipy.spatial.Voronoi"。 2. Numpy: Numpy是Python中的一个数值计算库,可以用于处理三维点云的数据。 3. Matplotlib: Matplotlib是Python中的一个数据可视化库,可以用于绘制三维Voronoi图。 使用这些库,我们可以实现如下的三维Voronoi程序: ``` python import numpy as np from scipy.spatial import Voronoi, voronoi_plot_2d import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 生成随机的三维点云 points = np.random.rand(10, 3) # 计算三维Voronoi图 vor = Voronoi(points) # 绘制三维Voronoi图 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for i in range(len(vor.regions)): region = vor.regions[i] if not -1 in region: polygon = [vor.vertices[j] for j in region] ax.plot(*zip(*polygon), color='b') # 设置坐标轴范围 ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) ax.set_zlim([0, 1]) plt.show() ``` 这个程序首先生成一个随机的三维点云,然后使用"scipy.spatial.Voronoi"函数计算三维Voronoi图。最后,使用Matplotlib绘制三维Voronoi图,其中每个面的颜色表示对应的Voronoi图中的区域。

matlab三维voronoi程序

好的,关于Matlab中的三维Voronoi程序,我可以给你提供一个简单的示例代码。在Matlab中,我们可以使用"voronoin"函数计算三维Voronoi图,并使用"trimesh"函数绘制Voronoi图。 ``` matlab % 生成随机的三维点云 points = rand(10, 3); % 计算三维Voronoi图 [V, C] = voronoin(points); % 绘制三维Voronoi图 trisurf(C, V(:,1), V(:,2), V(:,3), 'FaceColor', 'cyan', 'EdgeColor', 'none'); % 设置坐标轴范围 xlim([0, 1]); ylim([0, 1]); zlim([0, 1]); ``` 这个程序首先生成一个随机的三维点云,然后使用"voronoin"函数计算三维Voronoi图,其中V是Voronoi图的顶点,C是Voronoi图的三角面片。最后,使用"trisurf"函数绘制三维Voronoi图,其中V(:,1)、V(:,2)和V(:,3)分别对应于Voronoi图顶点的x、y和z坐标。可以看到,这个程序使用"FaceColor"选项将Voronoi图的面片颜色设置为青色,并使用"EdgeColor"选项将面片边缘颜色设置为无色。 希望这个示例代码可以帮到你。

相关推荐

最新推荐

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

rabbitmq客户端账号密码

在默认情况下,RabbitMQ的客户端账号和密码是"guest"。 但是,默认情况下,这个账号只能在localhost本机下访问,无法远程登录。如果需要添加一个远程登录的用户,可以使用命令rabbitmqctl add_user来添加用户,并使用rabbitmqctl set_permissions设置用户的权限。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [保姆级别带你入门RabbitMQ](https:

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

lua tm1637

TM1637是一种数字管显示驱动芯片,它可以用来控制4位7段数码管的显示。Lua是一种脚本语言,可以用于嵌入式系统和应用程序的开发。如果你想在Lua中使用TM1637驱动数码管,你需要先获取一个适配Lua的TM1637库或者编写自己的驱动代码。然后,你可以通过该库或者代码来控制TM1637芯片,实现数码管的显示功能。

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

生成模型的反事实解释方法及其局限性

693694不能很好地可视化/解释非空间定位的属性,如大小、颜色等。此外,它们可以显示图像的哪些区域可以被改变以影响分类,但不显示它们应该如何被改变。反事实解释通过提供替代输入来解决这些限制,其中改变一小组属性并且观察到不同的分类结果。生成模型是产生视觉反事实解释的自然候选者,事实上,最近的工作已经朝着这个目标取得了进展在[31,7,32,1]中,产生了生成的反事实解释,但它们的可视化立即改变了所有相关属性,如图所示。二、[29]中提供的另一种相关方法是使用来自分类器的深度表示来以不同粒度操纵生成的图像然而,这些可能涉及不影响分类结果的性质,并且还组合了若干属性。因此,这些方法不允许根据原子属性及其对分类的影响来其他解释方法使用属性生成反事实,其中可以对所需属性进行完全或部分监督[10,5

login_method

`login_method` 可以指代一个函数或方法,它的作用是用于实现用户登录的逻辑。具体实现方式可能因应用场景而异。例如,对于 web 应用程序,`login_method` 可以是一个视图函数,它接受用户提交的登录表单,验证用户信息,如果验证通过则创建会话并将用户信息保存在会话中;对于桌面应用程序,`login_method` 可以是一个类方法,它接受用户输入的登录信息,验证用户身份,如果验证通过则创建用户对象并保存在内存中,以便后续操作使用。总之,`login_method` 的作用是实现用户身份验证并创建用户会话或对象。

freescale IMX6 开发板原理图

freesacle 的arm cortex-a9的双核 四核管脚兼容CPU开发板原理图。