帮我用pytorch写一个神经网络,用于获取音频文件的特征
时间: 2023-03-29 14:01:29 浏览: 106
好的,我可以回答这个问题。以下是一个简单的用 PyTorch 实现的神经网络,用于获取音频文件的特征:
```python
import torch
import torch.nn as nn
class AudioFeatureExtractor(nn.Module):
def __init__(self):
super(AudioFeatureExtractor, self).__init__()
self.conv1 = nn.Conv1d(1, 32, kernel_size=3, stride=1, padding=1)
self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2, padding=)
self.conv2 = nn.Conv1d(32, 64, kernel_size=3, stride=1, padding=1)
self.pool2 = nn.MaxPool1d(kernel_size=2, stride=2, padding=)
self.conv3 = nn.Conv1d(64, 128, kernel_size=3, stride=1, padding=1)
self.pool3 = nn.MaxPool1d(kernel_size=2, stride=2, padding=)
self.fc1 = nn.Linear(128 * 11, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 128)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.pool2(x)
x = self.conv3(x)
x = nn.functional.relu(x)
x = self.pool3(x)
x = x.view(-1, 128 * 11)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
x = nn.functional.relu(x)
x = self.fc3(x)
return x
```
这个神经网络包含三个卷积层和三个全连接层,用于从音频文件中提取特征。你可以将音频文件转换为 PyTorch 张量,并将其输入到这个神经网络中,以获取特征。
阅读全文