mdl = 'Buck_Boost'; open_system(mdl) obsInfo=rlNumericSpec([2 1]); obsInfo.Name='observations'; actInfo=rlNumericSpec([1 1],'LowerLimit',0,'UpperLimit',1); actInfo.Name='action'; blk=[mdl,'/RL Agent']; env=rlSimulinkEnv(mdl,blk,obsInfo,actInfo); %env.ResetFcn = @(in)localResetFcn(in); Ts=0.001; Tf=0.05; rng(0) %Create Critic % Observation path obsPath = [ featureInputLayer(obsInfo.Dimension(1),Name="obsInputLayer") fullyConnectedLayer(50) reluLayer fullyConnectedLayer(25,Name="obsPathOutLayer")]; % Action path actPath = [ featureInputLayer(actInfo.Dimension(1),Name="actInputLayer") fullyConnectedLayer(25,Name="actPathOutLayer")]; % Common path commonPath = [ additionLayer(2,Name="add") reluLayer fullyConnectedLayer(1,Name="CriticOutput")]; criticNetwork = layerGraph(); criticNetwork = addLayers(criticNetwork,obsPath); criticNetwork = addLayers(criticNetwork,actPath); criticNetwork = addLayers(criticNetwork,commonPath); criticNetwork = connectLayers(criticNetwork, ... "obsPathOutLayer","add/in1"); criticNetwork = connectLayers(criticNetwork, ... "actPathOutLayer","add/in2"); %View the critic network configuration. %figure %plot(criticNetwork) %Convert the network to a dlnetwork object and summarize its properties. criticNetwork = dlnetwork(criticNetwork); critic = rlQValueFunction(criticNetwork, ... obsInfo,actInfo, ... ObservationInputNames="obsInputLayer", ... ActionInputNames="actInputLayer"); %getValue(critic, ... %{rand(obsInfo.Dimension)}, ... %{rand(actInfo.Dimension)}) %Create Actor actorNetwork = [ featureInputLayer(obsInfo.Dimension(1)) fullyConnectedLayer(3) tanhLayer fullyConnectedLayer(actInfo.Dimension(1)) ]; actorNetwork = dlnetwork(actorNetwork); actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo); %getAction(actor,{rand(obsInfo.Dimension)}) %Create DDPG Agent agent = rlDDPGAgent(actor,critic); agent.SampleTime = Ts; agent.AgentOptions.TargetSmoothFactor = 1e-3; agent.AgentOptions.DiscountFactor = 1.0; agent.AgentOptions.MiniBatchSize = 64; agent.AgentOptions.ExperienceBufferLength = 1e6; agent.AgentOptions.NoiseOptions.Variance = 0.3; agent.AgentOptions.NoiseOptions.VarianceDecayRate = 1e-5; agent.AgentOptions.CriticOptimizerOptions.LearnRate = 1e-03; agent.AgentOptions.CriticOptimizerOptions.GradientThreshold = 1; agent.AgentOptions.ActorOptimizerOptions.LearnRate = 1e-04; agent.AgentOptions.ActorOptimizerOptions.GradientThreshold = 1; %Train Agent trainOpts = rlTrainingOptions(... MaxEpisodes=500, ... MaxStepsPerEpisode=ceil(Tf/Ts), ... ScoreAveragingWindowLength=20, ... Verbose=false, ... Plots="training-progress",... StopTrainingCriteria="AverageReward",... StopTrainingValue=2000); doTraining =true; %doTraining =false; rng(1) if doTraining % Train the agent. trainingStats = train(agent,env,trainOpts); else load agent.mat % Load the pretrained agent for the example. end %simOpts = rlSimulationOptions(MaxSteps=ceil(Tf/Ts),StopOnError="on"); %experiences = sim(env,agent,simOpts);帮我检查这个matlab中构建并训练DDPG智能体的程序是否有问题,并加以改进
时间: 2023-06-24 15:08:06 浏览: 265
AFT05MS004N_MDL_ADS_ADS模型_AFT05MS004N_MDL_ADS_
5星 · 资源好评率100%
这段代码看起来没有明显的错误,但是可能存在一些可以改进的地方。以下是一些建议:
1. 在创建 actor 和 critic 时,可以尝试使用更复杂的神经网络结构,例如增加更多的隐藏层或使用卷积层等。
2. 在训练智能体时,可以尝试调整训练参数,例如增加训练次数、调整批大小或学习速率等。
3. 可以尝试使用更复杂的环境,例如添加噪声或随机性,以提高智能体的鲁棒性和泛化能力。
4. 最后,建议在训练智能体之前先对环境进行一些基本的测试和调试,以确保代码能够正确运行并产生有意义的结果。
阅读全文