两个串联神经网络训练代码
时间: 2023-07-08 22:37:49 浏览: 163
下面是两个串联神经网络训练的代码示例,一个是基于PyTorch实现的,另一个是基于Keras实现的:
PyTorch代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义第一个神经网络
class Net1(nn.Module):
def __init__(self):
super(Net1, self).__init__()
self.fc1 = nn.Linear(10, 20)
self.fc2 = nn.Linear(20, 10)
def forward(self, x):
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
# 定义第二个神经网络
class Net2(nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.fc1 = nn.Linear(10, 20)
self.fc2 = nn.Linear(20, 5)
def forward(self, x):
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
# 定义串联神经网络
class ConcatNet(nn.Module):
def __init__(self):
super(ConcatNet, self).__init__()
self.net1 = Net1()
self.net2 = Net2()
def forward(self, x):
x = self.net1(x)
x = self.net2(x)
return x
# 训练串联神经网络
net = ConcatNet()
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)
for epoch in range(100):
# 生成训练数据
inputs = torch.randn(100, 10)
labels = torch.randn(100, 5)
# 前向传播
outputs = net(inputs)
# 计算损失
loss = criterion(outputs, labels)
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch [%d/%d], Loss: %.4f' % (epoch+1, 100, loss.item()))
```
Keras代码:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
# 定义第一个神经网络
model1 = Sequential()
model1.add(Dense(units=20, activation='relu', input_dim=10))
model1.add(Dense(units=10, activation='relu'))
# 定义第二个神经网络
model2 = Sequential()
model2.add(Dense(units=20, activation='relu', input_dim=10))
model2.add(Dense(units=5, activation='relu'))
# 定义串联神经网络
model = Sequential()
model.add(model1)
model.add(model2)
# 编译模型
model.compile(loss='mse', optimizer='sgd')
# 训练模型
for epoch in range(100):
# 生成训练数据
inputs = np.random.randn(100, 10)
labels = np.random.randn(100, 5)
# 训练模型
loss = model.train_on_batch(inputs, labels)
print('Epoch [%d/%d], Loss: %.4f' % (epoch+1, 100, loss))
```
阅读全文