marching cubes算法matlab

时间: 2023-06-05 20:47:22 浏览: 270
marching cubes算法是一种用于三维体数据的表面重建方法。该算法将三维体数据划分为小的立方体单元,并根据每个单元内部的数值情况,确定该单元是否与表面相交。然后,根据相交情况,使用预定义的三角形模板来重建表面。在Matlab中,可以使用isosurface函数来实现marching cubes算法。该函数可以将三维体数据转换为表面网格,并返回表面的顶点和三角形索引。示例代码如下: % 生成三维体数据 [x,y,z] = meshgrid(-2:.2:2); v = x.*exp(-x.^2-y.^2-z.^2); % 使用isosurface函数进行表面重建 iso = .5; fv = isosurface(x,y,z,v,iso); % 绘制表面 patch(fv,'FaceColor','red','EdgeColor','none'); daspect([1 1 1]); view(3); camlight; lighting gouraud;
相关问题

三维重建marching cubes算法用matlab代码实现

由于三维重建marching cubes算法的实现涉及到很多数学知识和图形学原理,因此在这里我只能给出一个简单的示例代码,供参考: 1. 首先,我们需要准备一些数据,例如一个3D数组,表示某个物体的体素数据: voxels = rand(10,10,10) > 0.5; 其中,rand(10,10,10)返回一个大小为10x10x10的随机数矩阵,大于0.5的元素被视为1,小于0.5的元素被视为0,从而生成一个模拟的3D物体。 2. 接下来,我们需要定义一些辅助函数,例如计算立方体的8个顶点坐标、查找某个点在数组中的索引等: function [vertices, faces] = isosurface_from_voxels(voxels, threshold) [X,Y,Z] = meshgrid(1:size(voxels,1), 1:size(voxels,2), 1:size(voxels,3)); vertices = [X(:), Y(:), Z(:)]; values = voxels(:); index = values > threshold; vertices = vertices(index,:); values = values(index); faces = isosurface(X,Y,Z,voxels,threshold); end function index = sub2ind_3d(size, sub) index = sub(1) + (sub(2)-1)*size(1) + (sub(3)-1)*size(1)*size(2); end function sub = ind2sub_3d(size, index) sub(1) = mod(index-1, size(1)) + 1; sub(2) = mod((index-1)/size(1), size(2)) + 1; sub(3) = floor((index-1)/(size(1)*size(2))) + 1; end 3. 最后,我们可以调用isosurface_from_voxels函数,将体素数据转换为三角网格,并使用patch函数绘制出来: [vertices, faces] = isosurface_from_voxels(voxels, 0.5); figure; patch('Vertices', vertices, 'Faces', faces, 'FaceColor', 'r', 'EdgeColor', 'none'); axis equal; 这个示例代码只是一个简单的演示,实际上marching cubes算法的实现要比这个复杂得多。如果你想深入了解该算法的原理及其实现细节,建议参考相关的论文或书籍。

MarchingCubes matlab怎么调用

Marching Cubes是一种三维表面重建算法,可以将离散的三维数据点集合转换为三角网格模型。Matlab中可以使用isosurface函数来实现Marching Cubes算法。 isosurface函数的调用格式如下: ```matlab [F,V] = isosurface(X,Y,Z,V,isovalue) ``` 其中,X、Y、Z是三维网格中每个点的坐标,V是每个点的值,isovalue是等值面的阈值,F是三角网格的面信息,V是三角网格的顶点信息。 例如,假设我们有一个大小为100x100x100的三维数据,可以使用randn函数生成: ```matlab data = randn(100, 100, 100); ``` 然后,我们可以使用isosurface函数提取出等值面为0的三角网格: ```matlab [F,V] = isosurface(data, 0); ``` 最后,可以使用patch函数将三角网格绘制出来: ```matlab h = patch('Faces', F, 'Vertices', V); ``` 需要注意的是,isosurface函数返回的三角网格顶点信息V是一个n x 3的矩阵,其中n是顶点数量,每一行表示一个三维点的坐标。而三角网格面信息F是一个m x 3的矩阵,其中m是面数量,每一行表示一个三角面的三个顶点的索引。如果需要使用其他绘图函数,比如surf函数,需要将三角网格信息转换成对应的格式。

相关推荐

zip
MATLAB绘制3D隐函数曲面的方法总结-MarchingCubes.zip 本帖最后由 winner245 于 2013-10-28 00:45 编辑 背景介绍 Matlab提供了一系列绘图函数,常见的包括绘制2D曲线的plot函数、绘制2D隐函数曲线的ezplot函数、绘制3D曲面的mesh和surf函数、绘制3D显函数曲面的ezmesh和ezsurf函数。值得注意的是,ez系列的绘图函数里只有ezplot是绘制隐函数曲线的,ezmesh和ezsurf都是画显函数曲面的(不要被ez的名字误解了)。遗憾的是,matlab里并没有提供直接绘制3D隐函数曲面的函数。本帖的目的就是归纳总结几种方便易用的绘制隐函数曲面的办法。 问题描述 如何绘制3元方程f = 0确立的隐函数曲面z = g?其中,方程f = 0无法求解z关于x、y的表达式,即g的显式表达式无法获取。 准备工作——基础函数介绍 为了解决上述问题,我们需要先对几个重要的图形函数isosurface、patch、isonormals取得初步的了解,如果您已经对这三个函数很熟悉,可以直接跳过这一步。 l.  isosurface 等值面函数 调用格式:fv = isosurface作用:返回某个等值面(由isovalue指定)的表面(faces)和顶点(vertices)数据,存放在结构体fv中(fv由vertices、faces两个域构成)。如果是画隐函数 v = f = 0 的三维图形,那么等值面的数值为isovalue = 0。 2.  patch函数 调用格式:patch 以平面坐标为顶点,构造平面多边形,C是RGB颜色向量                    patch以空间3-D坐标为顶点,构造空间3D曲面,C是RGB颜色向量                    patch 通过包含vertices、faces两个域的结构体fv来构造3D曲面,fv可以直接由等值面函数isosurface得到 例如:patch) 3.  isonormals等值面法线函数 调用格式:isonormals实现功能:计算等值面V的顶点法线,将patch曲面p的法线设置为计算得到的法线(p是patch返回得到的句柄)。如果不设置法线的话,得到曲面在过渡地带看起来可能不是很光滑 有了上述三个函数后,我们已经具备间接绘制3D隐函数曲面的能力了。下面以方程 f = x.*y.*z.*log-10 = 0为例,讲解如何画3D隐函数曲面。 解决办法一:isosurface patch isonormals实现原理:先定义3元显函数v =f, 则 v = 0 定义的等值面就是z = g的3D曲面。利用isosurface函数获取v= 0 的等值面,将得到的等值面直接输入给patch函数,得出patch句柄p,并画出patch曲面的平面视角图形。对p用isonormals函数设置曲面顶点数据的法线,最后设置颜色、亮度、3D视角,得到3D曲面。 代码如下: f = @ x.*y.*z.*log-10;      % 函数表达式 [x,y,z] = meshgrid;       % 画图范围 v = f; h = patch); isonormals               set; xlabel;ylabel;zlabel; alpha    grid on; view; axis equal; camlight; lighting gouraud 复制代码 代码说明: alpha函数用于设置patch曲面的透明度(可以是0~1任意数值),1 表示不透明,0 表示最大透明度。如果想设置透明度为0.7,可以修改alpha为alpha。 使用此代码解决特定问题时,只需将第1行的函数表达式替换为特定问题的函数表达式,将第2行数据(x、y、z)范围换成合适的范围,后续代码无需任何变动。 得到图形: 1.png 解决办法二:Mupad Mupad符号引擎里提供了现成的三维隐函数画图函数:Implicit3d 在matlab里开启Mupad的方法是:在commandwindow 里输入mupad 来启动一个notebook。在启动的notebook里再输入如下代码: plot-10, x = -10..10, y = -10..10, z = -10..10), Scaling = Constrained)复制代码 回车后得到如下图形: 1.png 解决办法三:第三方工具包ezimplot3 在matlab central 的 file exchange 上有一个非常优秀的绘制3维隐函数的绘图函数,叫ezimplot3。感兴趣的可以在如下链接下载:http://www.mathworks.com/matlabcentral/fileexchange/23623-ezimplot3-implicit-3d-functions-plotter也可以直接从本帖下载: ezimplot3.zip ezimplot3一共有三种参数调用方式: ezimplot3 画函数f= 0 在-2*pi< X < 2* pi, -2* pi < Y < 2* pi, -2* pi < Z < 2* pi上的图形ezimplot3画函数f= 0 在A< X < B, A < Y < B, A < Z < B上的图形ezimplot3画函数f= 0 在XMIN< X < XMAX, YMIN < Y < YMAX, ZMIN < Z < ZMAX上的图形 ezimplot3使用方法:解压ezimplot3.zip,将解压得到的ezimplot3.m 添加到matlab当前搜索路径后就可以使用了。然后,可以直接在command window 输入代码:f = @ x*y*z*log-10; ezimplot3;  % [-10, 10] 表示图形范围x、y、z都在区间[-10, 10] 复制代码 即得到如下图形: 1.png 若干说明: ezimplot3和方法一本质上完全相同。即ezimplot3实际上也是基于isosurface patch isonormals的实现ezimplot3与方法一的图形视觉效果相同,唯一的区别是,ezimplot3的使用了0.7的透明度:alphaezimplot3在方法一基础上增加了一些外包功能,如:允许函数句柄f是非向量化的函数(即函数定义无需.*  ./  .^),这在ezimplot3内部会自动调用vectorize实现函数向量化。另外,ezimplot3可以在调用的时候方便的设定坐标范围。 常见问题和解决办法: 常见问题:很多人在使用以上方法后,经常出现的问题是代码没有任何错误,程序可以运行,就是出来的图形只有一个空坐标轴,看不到图形。 问题分析:出现这种问题的原因是图形的显示区域没设对。比如,我们上述三种方法都是在x为-10到10的范围内,如果你设的范围内本身就没有图形,那当然就看不到图形了。解决办法:把图形显示范围重新设置对即可,如果不知道图形的大致范围,就手工多改几次,直到看到图形为止 方法一,图形范围是在第2句的meshgrid函数决定的,meshgrid里给出的x、y、z范围就是最终画图范围,修改meshgrid语句即可。方法二(Mupad),x =-10..10, y = -10..10, z = -10..10是表示显示范围,修改这里即可。方法三,用ezimplot3 ezimplot3两种方式控制图形显示范围。 后记:slice切片函数 matlab还提供一种画切片图形的函数slice,slice做出的图是在切片上用颜色表示v的值。有时,我们画切片图形也有助于我们理解一个4维图形。以  v= f = x*y*z*exp)  为例,假设我们希望看 v =f 在 x =0, y = 1, z = 1 这些平面切片的图形,我们可以用以下代码: [x,y,z] = meshgrid); v = x.*y.*z.*exp); xslice = 0; yslice = 1; zslice = 1; slice xlabel; ylabel; zlabel; colormap hsv 复制代码 得到图形为: 1.png 经常听有人说想画 “4D图形”,前3维数据[x,y,z]表示空间位置,第4维数据v表示颜色(温度等),这类图形可以方便地通过slice切片实现: slice,这里就是在指定的切片上在空间坐标[x,y,z]处,用v值指定颜色画图。关于这类 “4D图形”的画法的一个典型例子:https://www.ilovematlab.cn/thread-265517-1-1.html 另外,我在 23 楼提供了一个slice 函数应用的生动例子:slice 3D 动画图形。感兴趣的朋友可以看看 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 欢迎大家踊跃讨论,给出更多更好的办法

最新推荐

asp代码ASP家教信息管理系统(源代码+论文)

asp代码ASP家教信息管理系统(源代码+论文)本资源系百度网盘分享地址

基于ssm高校毕业选题管理系统.zip

基于ssm高校毕业选题管理系统.zip

基于旷视研究院领先的深度学习算法,提供满足多业务场景的预训练模型.zip

人工智能毕业设计&课程设计

tensorflow_model_optimization-0.1.3.dev0-py2.py3-none-any.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。

tensorflow_model_analysis-0.15.0-py3-none-any.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。

ExcelVBA中的Range和Cells用法说明.pdf

ExcelVBA中的Range和Cells用法是非常重要的,Range对象可以用来表示Excel中的单元格、单元格区域、行、列或者多个区域的集合。它可以实现对单元格内容的赋值、取值、复制、粘贴等操作。而Cells对象则表示Excel中的单个单元格,通过指定行号和列号来操作相应的单元格。 在使用Range对象时,我们需要指定所操作的单元格或单元格区域的具体位置,可以通过指定工作表、行号、列号或者具体的单元格地址来实现。例如,可以通过Worksheets("Sheet1").Range("A5")来表示工作表Sheet1中的第五行第一列的单元格。然后可以通过对该单元格的Value属性进行赋值,实现给单元格赋值的操作。例如,可以通过Worksheets("Sheet1").Range("A5").Value = 22来讲22赋值给工作表Sheet1中的第五行第一列的单元格。 除了赋值操作,Range对象还可以实现其他操作,比如取值、复制、粘贴等。通过获取单元格的Value属性,可以取得该单元格的值。可以通过Range对象的Copy和Paste方法实现单元格内容的复制和粘贴。例如,可以通过Worksheets("Sheet1").Range("A5").Copy和Worksheets("Sheet1").Range("B5").Paste来实现将单元格A5的内容复制到单元格B5。 Range对象还有很多其他属性和方法可供使用,比如Merge方法可以合并单元格、Interior属性可以设置单元格的背景颜色和字体颜色等。通过灵活运用Range对象的各种属性和方法,可以实现丰富多样的操作,提高VBA代码的效率和灵活性。 在处理大量数据时,Range对象的应用尤为重要。通过遍历整个单元格区域来实现对数据的批量处理,可以极大地提高代码的运行效率。同时,Range对象还可以多次使用,可以在多个工作表之间进行数据的复制、粘贴等操作,提高了代码的复用性。 另外,Cells对象也是一个非常实用的对象,通过指定行号和列号来操作单元格,可以简化对单元格的定位过程。通过Cells对象,可以快速准确地定位到需要操作的单元格,实现对数据的快速处理。 总的来说,Range和Cells对象在ExcelVBA中的应用非常广泛,可以实现对Excel工作表中各种数据的处理和操作。通过灵活使用Range对象的各种属性和方法,可以实现对单元格内容的赋值、取值、复制、粘贴等操作,提高代码的效率和灵活性。同时,通过Cells对象的使用,可以快速定位到需要操作的单元格,简化代码的编写过程。因此,深入了解和熟练掌握Range和Cells对象的用法对于提高ExcelVBA编程水平是非常重要的。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

C++中的数据库连接与操作技术

# 1. 数据库连接基础 数据库连接是在各种软件开发项目中常见的操作,它是连接应用程序与数据库之间的桥梁,负责传递数据与指令。在C++中,数据库连接的实现有多种方式,针对不同的需求和数据库类型有不同的选择。在本章中,我们将深入探讨数据库连接的概念、重要性以及在C++中常用的数据库连接方式。同时,我们也会介绍配置数据库连接的环境要求,帮助读者更好地理解和应用数据库连接技术。 # 2. 数据库操作流程 数据库操作是C++程序中常见的任务之一,通过数据库操作可以实现对数据库的增删改查等操作。在本章中,我们将介绍数据库操作的基本流程、C++中执行SQL查询语句的方法以及常见的异常处理技巧。让我们

unity中如何使用代码实现随机生成三个不相同的整数

你可以使用以下代码在Unity中生成三个不同的随机整数: ```csharp using System.Collections.Generic; public class RandomNumbers : MonoBehaviour { public int minNumber = 1; public int maxNumber = 10; private List<int> generatedNumbers = new List<int>(); void Start() { GenerateRandomNumbers();

基于单片机的电梯控制模型设计.doc

基于单片机的电梯控制模型设计是一项旨在完成课程设计的重要教学环节。通过使用Proteus软件与Keil软件进行整合,构建单片机虚拟实验平台,学生可以在PC上自行搭建硬件电路,并完成电路分析、系统调试和输出显示的硬件设计部分。同时,在Keil软件中编写程序,进行编译和仿真,完成系统的软件设计部分。最终,在PC上展示系统的运行效果。通过这种设计方式,学生可以通过仿真系统节约开发时间和成本,同时具有灵活性和可扩展性。 这种基于单片机的电梯控制模型设计有利于促进课程和教学改革,更有利于学生人才的培养。从经济性、可移植性、可推广性的角度来看,建立这样的课程设计平台具有非常重要的意义。通过仿真系统,学生可以在实际操作之前完成系统设计和调试工作,提高了实验效率和准确性。最终,通过Proteus设计PCB,并完成真正硬件的调试。这种设计方案可以为学生提供实践操作的机会,帮助他们更好地理解电梯控制系统的原理和实践应用。 在设计方案介绍中,指出了在工业领域中,通常采用可编程控制器或微型计算机实现电梯逻辑控制,虽然可编程控制器有较强的抗干扰性,但价格昂贵且针对性强。而通过单片机控制中心,可以针对不同楼层分别进行合理调度,实现电梯控制的模拟。设计中使用按键用于用户发出服务请求,LED用于显示电梯状态。通过这种设计方案,学生可以了解电梯控制系统的基本原理和实现方法,培养他们的实践操作能力和创新思维。 总的来说,基于单片机的电梯控制模型设计是一项具有重要意义的课程设计项目。通过Proteus软件与Keil软件的整合,搭建单片机虚拟实验平台,可以帮助学生更好地理解电梯控制系统的原理和实践应用,培养他们的实践操作能力和创新思维。这种设计方案不仅有利于课程和教学改革,也对学生的人才培养具有积极的促进作用。通过这样的设计方案,学生可以在未来的工作中更好地应用所学知识,为电梯控制系统的研发和应用做出贡献。