如何用改进的形态学分水岭分割算法批量分割dicom图像利用python,举个例子
时间: 2024-05-04 16:15:15 浏览: 202
对于您的问题,我可以回答。您可以通过Python中的SimpleITK库来实现改进的形态学分水岭分割算法的批量分割DICOM图像。以下是一个简单的代码示例:
```python
import SimpleITK as sitk
import os
def watershed_segmentation(image_path):
# 读取DICOM图像
reader = sitk.ImageSeriesReader()
dicom_names = reader.GetGDCMSeriesFileNames(image_path)
reader.SetFileNames(dicom_names)
image = reader.Execute()
# 利用形态学分水岭算法进行分割
gradient_image = sitk.GradientMagnitude(image)
sitk.Show(gradient_image)
smoothing = sitk.CurvatureFlow(image1=gradient_image, timeStep=0.125, numberOfIterations=5)
sitk.Show(smoothing)
seeds = sitk.ConnectedComponent(smoothing > 0)
sitk.Show(seeds)
# 分水岭算法的参数调整
vectorRadius = (1,1,1)
scalarRadius = 1.0
seeds.SetSpacing(image.GetSpacing())
seeds.SetOrigin(image.GetOrigin())
ws = sitk.MorphologicalWatershedFromMarkers(smoothing, seeds, markWatershedLine=False,
fullyConnected=True, minimumForeground=10,
watershedLine=2)
sitk.Show(ws)
array = sitk.GetArrayFromImage(ws)
# 将分割结果保存到本地
save_file_name = os.path.join(image_path, "result.nii.gz")
sitk.WriteImage(ws, save_file_name)
# 遍历文件夹下所有的DICOM图像进行分割
dicom_folder = "your dicom folder path"
for dirName, subdirList, fileList in os.walk(dicom_folder):
for filename in fileList:
if ".dcm" in filename.lower():
image_path = os.path.join(dirName, filename)
watershed_segmentation(image_path)
```
这段代码使用了SimpleITK库中的形态学分水岭分割算法进行DICOM图像分割,并对参数进行适当调整以获得最佳结果。您可以将该代码嵌入您的现有项目中,以实现DICOM图像的批量分割。
阅读全文
相关推荐
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)