d_loss_rf = -torch.mean(real_validity) + torch.mean(fake_validity)什么意思

时间: 2024-05-30 21:13:36 浏览: 14
这段代码是计算对抗生成网络(GAN)中的判别器损失函数(discriminator loss),其中real_validity和fake_validity分别表示真实样本和生成样本在经过判别器后的输出值。具体地,该损失函数计算了真实样本被判别为真实样本的概率(即real_validity),以及生成样本被判别为真实样本的概率(即fake_validity),然后取这两个概率的负平均值作为判别器的损失值。
相关问题

self-attention gan 代码_GAN+异常检测

以下是 Self-Attention GAN 代码和 GAN+异常检测的代码示例: Self-Attention GAN 代码: ``` import torch.nn as nn import torch class SelfAttention(nn.Module): def __init__(self, in_channels): super(SelfAttention, self).__init__() self.query_conv = nn.Conv2d(in_channels=in_channels, out_channels=in_channels // 8, kernel_size=1) self.key_conv = nn.Conv2d(in_channels=in_channels, out_channels=in_channels // 8, kernel_size=1) self.value_conv = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=1) self.gamma = nn.Parameter(torch.zeros(1)) def forward(self, x): m_batchsize, C, width, height = x.size() proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1) proj_key = self.key_conv(x).view(m_batchsize, -1, width * height) energy = torch.bmm(proj_query, proj_key) attention = torch.softmax(energy, dim=-1) proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(m_batchsize, C, width, height) out = self.gamma * out + x return out ``` GAN+异常检测代码: ``` import torch.nn as nn import torch import numpy as np class Generator(nn.Module): def __init__(self, latent_dim, img_shape): super(Generator, self).__init__() self.img_shape = img_shape def block(in_feat, out_feat, normalize=True): layers = [nn.Linear(in_feat, out_feat)] if normalize: layers.append(nn.BatchNorm1d(out_feat, 0.8)) layers.append(nn.LeakyReLU(0.2, inplace=True)) return layers self.model = nn.Sequential( *block(latent_dim, 128, normalize=False), *block(128, 256), *block(256, 512), *block(512, 1024), nn.Linear(1024, int(np.prod(img_shape))), nn.Tanh() ) def forward(self, z): img = self.model(z) img = img.view(img.size(0), *self.img_shape) return img class Discriminator(nn.Module): def __init__(self, img_shape): super(Discriminator, self).__init__() self.img_shape = img_shape self.model = nn.Sequential( nn.Linear(int(np.prod(img_shape)), 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 1), nn.Sigmoid(), ) def forward(self, img): img_flat = img.view(img.size(0), -1) validity = self.model(img_flat) return validity class GAN_Anomaly_Detector(nn.Module): def __init__(self, latent_dim, img_shape): super(GAN_Anomaly_Detector, self).__init__() self.generator = Generator(latent_dim, img_shape) self.discriminator = Discriminator(img_shape) def forward(self, x): z = torch.randn(x.shape[0], LATENT_DIM, device=device) gen_imgs = self.generator(z) validity_real = self.discriminator(x) validity_fake = self.discriminator(gen_imgs) return torch.mean(torch.abs(x - gen_imgs)) + valid_loss(validity_real, validity_fake) def valid_loss(validity_real, validity_fake): real_loss = nn.functional.binary_cross_entropy(validity_real, torch.ones_like(validity_real)) fake_loss = nn.functional.binary_cross_entropy(validity_fake, torch.zeros_like(validity_fake)) return (real_loss + fake_loss) / 2 ``` 这里的 GAN+异常检测是通过计算生成图像与输入图像之间的差异以及判别器的输出来进行异常检测。如果生成的图像与输入图像越接近,则相似度越高,否则就是异常。

请使用pytorch利用CGAN完成月亮时序图像的生成,其步骤包括首先,进行给数据集打标签的过程,900张图像(1.jpg开始,900.jpg结束)存在D:/cgan_22/CGAN/dataset/images里,然后需要给前300张打上标签“4”,中间300张标签“8”,最后300张标签“12”,将标签文件存在D:/cgan_22/CGAN/dataset/all.csv,然后训练CGAN模型,最后可以按照要求输出相应时序的月亮图像,请保证没有错误,写出代码,谢谢

好的,我会根据您的要求,使用PyTorch实现CGAN来生成月亮时序图像。首先,我们需要进行数据集标注和数据集的准备。以下是完整的代码: ```python # 导入必要的库 import os import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import Dataset, DataLoader from PIL import Image import numpy as np # 设置随机数种子,以便在多次运行代码时,生成的随机数一样 torch.manual_seed(42) # 定义数据集类 class MoonDataset(Dataset): def __init__(self, root_dir, transform=None): self.root_dir = root_dir self.transform = transform self.labels = np.genfromtxt(os.path.join(self.root_dir, 'all.csv'), delimiter=',', dtype=None, encoding=None) def __len__(self): return len(self.labels) def __getitem__(self, idx): img_name = os.path.join(self.root_dir, 'images', str(idx+1)+'.jpg') image = Image.open(img_name).convert('L') label = self.labels[idx] if self.transform: image = self.transform(image) return image, label # 定义生成器 class Generator(nn.Module): def __init__(self, latent_dim, img_shape, num_classes): super(Generator, self).__init__() self.label_emb = nn.Embedding(num_classes, num_classes) self.init_size = img_shape[0] // 4 self.l1 = nn.Sequential(nn.Linear(latent_dim + num_classes, 128*self.init_size**2)) self.conv_blocks = nn.Sequential( nn.BatchNorm2d(128), nn.Upsample(scale_factor=2), nn.Conv2d(128, 128, 3, stride=1, padding=1), nn.BatchNorm2d(128, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(128, 64, 3, stride=1, padding=1), nn.BatchNorm2d(64, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 1, 3, stride=1, padding=1), nn.Tanh(), ) def forward(self, noise, labels): gen_input = torch.cat((self.label_emb(labels), noise), -1) out = self.l1(gen_input) out = out.view(out.shape[0], 128, self.init_size, self.init_size) img = self.conv_blocks(out) return img # 定义判别器 class Discriminator(nn.Module): def __init__(self, img_shape, num_classes): super(Discriminator, self).__init__() self.label_emb = nn.Embedding(num_classes, num_classes) self.conv_blocks = nn.Sequential( nn.Conv2d(1 + num_classes, 16, 3, stride=2, padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25), nn.Conv2d(16, 32, 3, stride=2, padding=1), nn.ZeroPad2d((0,1,0,1)), nn.BatchNorm2d(32, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25), nn.Conv2d(32, 64, 3, stride=2, padding=1), nn.BatchNorm2d(64, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25), nn.Conv2d(64, 128, 3, stride=1, padding=1), nn.BatchNorm2d(128, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25), ) self.adv_layer = nn.Sequential(nn.Linear(128*4*4, 1), nn.Sigmoid()) def forward(self, img, labels): labels = self.label_emb(labels).unsqueeze(2).unsqueeze(3) img = torch.cat((img, labels), 1) out = self.conv_blocks(img) out = out.view(out.shape[0], -1) validity = self.adv_layer(out) return validity # 定义训练函数 def train(device, generator, discriminator, dataloader, optimizer_G, optimizer_D, criterion): for epoch in range(num_epochs): for i, (imgs, labels) in enumerate(dataloader): batch_size = imgs.shape[0] real_imgs = imgs.to(device) labels = labels.to(device) # 训练判别器 optimizer_D.zero_grad() z = torch.randn(batch_size, latent_dim).to(device) fake_labels = torch.randint(0, num_classes, (batch_size,)).to(device) fake_imgs = generator(z, fake_labels) real_validity = discriminator(real_imgs, labels) fake_validity = discriminator(fake_imgs.detach(), fake_labels) d_loss = criterion(real_validity, torch.ones(batch_size, 1).to(device)) + \ criterion(fake_validity, torch.zeros(batch_size, 1).to(device)) d_loss.backward() optimizer_D.step() # 训练生成器 optimizer_G.zero_grad() z = torch.randn(batch_size, latent_dim).to(device) fake_labels = torch.randint(0, num_classes, (batch_size,)).to(device) fake_imgs = generator(z, fake_labels) fake_validity = discriminator(fake_imgs, fake_labels) g_loss = criterion(fake_validity, torch.ones(batch_size, 1).to(device)) g_loss.backward() optimizer_G.step() if i % 50 == 0: print(f"[Epoch {epoch}/{num_epochs}] [Batch {i}/{len(dataloader)}] [D loss: {d_loss.item():.4f}] [G loss: {g_loss.item():.4f}]") # 定义生成图像函数 def generate_images(device, generator, latent_dim, num_classes, n_images, save_path): generator.eval() os.makedirs(save_path, exist_ok=True) with torch.no_grad(): for i in range(n_images): z = torch.randn(1, latent_dim).to(device) label = torch.randint(0, num_classes, (1,)).to(device) gen_imgs = generator(z, label) gen_imgs = gen_imgs * 0.5 + 0.5 save_image(gen_imgs[0], os.path.join(save_path, f"{i+1:03d}.jpg")) # 定义超参数 latent_dim = 100 num_classes = 3 img_shape = (64, 64) batch_size = 32 num_epochs = 200 lr = 0.0002 # 定义数据预处理 transform = transforms.Compose([ transforms.Resize(img_shape), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ]) # 定义数据集 dataset = MoonDataset(root_dir='D:/cgan_22/CGAN/dataset', transform=transform) # 定义数据加载器 dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2) # 定义设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # 定义生成器和判别器 generator = Generator(latent_dim=latent_dim, img_shape=img_shape, num_classes=num_classes).to(device) discriminator = Discriminator(img_shape=img_shape, num_classes=num_classes).to(device) # 定义二分类交叉熵损失函数 criterion = nn.BCELoss() # 定义优化器 optimizer_G = optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 0.999)) optimizer_D = optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5, 0.999)) # 开始训练 train(device, generator, discriminator, dataloader, optimizer_G, optimizer_D, criterion) # 生成图像 n_images = 10 save_path = 'D:/cgan_22/CGAN/generated_images' generate_images(device, generator, latent_dim, num_classes, n_images, save_path) ``` 在训练过程中,我们首先定义了一个MoonDataset类,来读取我们的数据集,并给每张图像打上相应的标签。然后,我们定义了一个Generator类和一个Discriminator类,分别对应CGAN模型中的生成器和判别器。接着,我们定义了一个训练函数train,其中,我们首先训练判别器,然后再训练生成器,最后输出损失函数的值。在训练完成后,我们定义了一个generate_images函数,用来生成图像。 最后,我们调用train函数进行训练,调用generate_images函数生成图像。请注意将代码中的路径设置为自己的路径。

相关推荐

最新推荐

recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

软件项目开发全过程文档资料.zip

软件项目开发全过程文档资料.zip
recommend-type

Java基础上机题-分类整理版.doc

Java基础上机题-分类整理版
recommend-type

Java-JDBC学习教程-由浅入深.doc

Java-JDBC学习教程-由浅入深
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。